Volume 45 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
HAN Shaoyan, GAO Ruxin. A Wave Finite Element Method for Free Vibration Analysis of Lattice Core Sandwich Cylindrical Shells[J]. Applied Mathematics and Mechanics, 2024, 45(1): 25-33. doi: 10.21656/1000-0887.440130
Citation: HAN Shaoyan, GAO Ruxin. A Wave Finite Element Method for Free Vibration Analysis of Lattice Core Sandwich Cylindrical Shells[J]. Applied Mathematics and Mechanics, 2024, 45(1): 25-33. doi: 10.21656/1000-0887.440130

A Wave Finite Element Method for Free Vibration Analysis of Lattice Core Sandwich Cylindrical Shells

doi: 10.21656/1000-0887.440130
  • Received Date: 2023-04-30
  • Rev Recd Date: 2023-10-10
  • Publish Date: 2024-01-01
  • A wave finite element method was developed for the free vibration analysis of lattice core sandwich cylindrical shells. Firstly, based on the propagation law of free waves, governing equations for a core element of the lattice core sandwich cylindrical shell was established. Compared with the full-scale finite element model, degrees of freedom of the governing equations for a core element are significantly reduced. Secondly, an explicit expression for the inverse of the constrained dynamic stiffness matrix was derived based on the Neumann series, which not only improves computation efficiency but also separates the natural frequency from the governing equations, thereby transforming the natural frequency solution of the lattice core sandwich cylindrical shell into a quadratic eigenvalue problem of a core element. Finally, according to the relationship between the structural vibration mode and the free wave, the expressions of the axial and circumferential wave propagation parameters of the cylindrical shell were given, and the natural frequencies and modes of the lattice core sandwich cylindrical shell were obtained. Numerical examples of the free vibration analysis on a lattice core sandwich cylindrical shell under different boundary conditions verify the validity and efficiency of the proposed method.
  • loading
  • [1]
    EVANS A G, HUTCHINSON J W, FLECK N A, et al. The topological design of multifunctional cellular metals[J]. Progress in Materials Science, 2001, 46(2-3): 309-327.
    [2]
    张华. 点阵夹芯圆柱壳抗屈曲性能模拟研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    ZHANG Hua. Simulation study on buckling resistance for lattice truss core sandwich cylinder[D]. Harbin: Harbin Institute of Technology, 2017. (in Chinese)
    [3]
    DESHPANDE V S, FLECK N A. Collapse of truss core sandwich beams in 3-point bending[J]. International Journal of Solids & Structures, 2001, 38(36/37): 6275-6305.
    [4]
    KOOISTRA G W, WADLEY H N G. Lattice truss structures from expanded metal sheet[J]. Materials & Design, 2005, 28(2): 507-514.
    [5]
    DEL OLMO E, GRANDE E, SAMARTIN C R, et al. Lattice structures for aerospace applications[C]//Proceedings of the 12th European Conference on Spacecraft Structures, Materials and Environmental Testing. Netherlands: ESTEC, 2012.
    [6]
    SUR A, DARVEKAR S, SHAH M. Recent advancements of micro-lattice structures: application, manufacturing methods, mechanical properties, topologies and challenges[J]. Arabian Journal for Science and Engineering, 2021, 46: 11587-11600. doi: 10.1007/s13369-021-05992-y
    [7]
    LIANG D, CHEN W, JU Y, et al. Comparing endwall heat transfer among staggered pin fin, Kagome and body centered cubic arrays[J]. Applied Thermal Engineering, 2021, 185: 116306. doi: 10.1016/j.applthermaleng.2020.116306
    [8]
    YIN H, ZHANG W, ZHU L, et al. Review on lattice structures for energy absorption properties[J]. Composite Structures, 2023, 304(Part 1): 116397.
    [9]
    WU W, HU W, QIAN G, et al. Mechanical design and multifunctional applications of chiral mechanical metamaterials: a review[J]. Materials and Design, 2019, 180: 107950. doi: 10.1016/j.matdes.2019.107950
    [10]
    陈建恩. 轻质材料层合板的非线性动力学理论分析与实验研究[D]. 北京: 北京工业大学, 2013.
    [11]
    郭宇红, 张伟, 杨晓东. 1∶2内共振情况下点阵夹芯板动力学的奇异性分析[J]. 应用数学和力学, 2018, 39(5): 506-528. doi: 10.21656/1000-0887.380190

    GUO Yuhong, ZHANG Wei, YANG Xiaodong. A singularity analysis on dynamics of symmetric cross-ply composite sandwich plates under 1∶2 resonance[J]. Applied Mathematics and Mechanics, 2018, 39(5): 506-528. (in Chinese) doi: 10.21656/1000-0887.380190
    [12]
    BRILLOUIN L. Wave Propagation in Periodic Structures[M]. Dover, 1946.
    [13]
    WAKI Y, MACE B R, BRENNAN M J. Numerical issues concerning the wave and finite element method for free and forced vibrations of waveguides[J]. Journal of Sound and Vibration, 2009, 327(1/2): 92-108.
    [14]
    PETYT M. Introduction to Finite Element Vibration Analysis[M]. Cambridge, MA: Cambridge University Press, 1990.
    [15]
    MEAD D J. Wave propagation in continuous periodic structures: research contributions from Southampton, 1964—1995[J]. Journal of Sound and Vibration, 1996, 190(3): 495-524. doi: 10.1006/jsvi.1996.0076
    [16]
    ZHONG W X, WILLIAMS F W. On the direct solution of wave propagation for repetitive structures[J]. Journal of Sound and Vibration, 1995, 181(3): 485-501. doi: 10.1006/jsvi.1995.0153
    [17]
    HUANG T M, LIN W W, SU W S. Palindromic quadratization and structure-preserving algorithm for palindromic matrix polynomials of even degree[J]. Numerische Mathematik, 2011, 118(4): 713-735. doi: 10.1007/s00211-011-0370-7
    [18]
    WANG W, FAN Y, LI L. Extending Zhong-Williams scheme to solve repeated-root wave modes[J]. Journal of Sound and Vibration, 2022, 519: 116584. doi: 10.1016/j.jsv.2021.116584
    [19]
    MITROU G, FERGUSON N, RENNO J. Wave transmission through two-dimensional structures by the hybrid FE/WFE approach[J]. Journal of Sound and Vibration, 2017, 389: 484-501. doi: 10.1016/j.jsv.2016.09.032
    [20]
    RENNO J M, MACE B R. Calculating the forced response of two-dimensional homogeneous media using the wave and finite element method[J]. Journal of Sound and Vibration, 2011, 330(24): 5913-5927. doi: 10.1016/j.jsv.2011.06.011
    [21]
    ZHOU C W, LAINÉ J P, ICHCHOU M N, et al. Multi-scale modelling for two-dimensional periodic structures using a combined mode/wave based approach[J]. Computers & Structures, 2015, 154: 145-162.
    [22]
    HOANG T, DUHAMEL D, FORET G. Wave finite element method for waveguides and periodic structures subjected to arbitrary loads[J]. Finite Elements in Analysis and Design, 2020, 179: 103437. doi: 10.1016/j.finel.2020.103437
    [23]
    MENCIK J M, DUHAMEL D. A wave-based model reduction technique for the description of the dynamic behavior of periodic structures involving arbitrary-shaped substructures and large-sized finite element models[J]. Finite Elements in Analysis and Design, 2015, 101: 1-14. doi: 10.1016/j.finel.2015.03.003
    [24]
    GUO J, XIAO Y, ZHANG S, et al. Bloch wave based method for dynamic homogenization and vibration analysis of lattice truss core sandwich structures[J]. Composite Structures, 2019, 229: 111437. doi: 10.1016/j.compstruct.2019.111437
    [25]
    LANGLEY R S. A note on the force boundary conditions for two-dimensional periodic structures with corner freedoms[J]. Journal of Sound and Vibration, 1993, 167(2): 377-381. doi: 10.1006/jsvi.1993.1341
    [26]
    STEWART G W. Matrix Algorithms, Volume 1: Basic Decompositions[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1998.
    [27]
    FAHY F J, GARDONIO P. Sound and Structural Vibration: Radiation, Transmission and Response[M]. Amsterdam: Academic Press, 2007.
    [28]
    CREMER L, HECKL M, PETERSSON B A T. Structure-Borne Sound[M]. 3rd ed. Berlin: Springer, 2005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views (154) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return