Volume 45 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
YANG Guojun, LÜ Minghang, TANG Guangwu, TIAN Qiwei, DU Yongfeng. Study on Bearing Capacities and Failure Stages of Tunnel-Type Anchorage Considering Different Failure Modes[J]. Applied Mathematics and Mechanics, 2024, 45(3): 273-286. doi: 10.21656/1000-0887.440146
Citation: YANG Guojun, LÜ Minghang, TANG Guangwu, TIAN Qiwei, DU Yongfeng. Study on Bearing Capacities and Failure Stages of Tunnel-Type Anchorage Considering Different Failure Modes[J]. Applied Mathematics and Mechanics, 2024, 45(3): 273-286. doi: 10.21656/1000-0887.440146

Study on Bearing Capacities and Failure Stages of Tunnel-Type Anchorage Considering Different Failure Modes

doi: 10.21656/1000-0887.440146
  • Received Date: 2023-05-12
  • Rev Recd Date: 2023-08-04
  • Publish Date: 2024-03-01
  • The existing studies mostly take the occurrence of plastic zones or stress peak point transfer on the contact surface of anchor rock as the criterion for the limit state. However, due to different engineering geological conditions, there are significant differences in the fracture surface alignments of tunnel anchors, and the ultimate bearing capacity of the tunnel-type anchorage (TTA) cannot be accurately derived. To further explore the working process of the TTA under pull-out loading, the power exponential form was used to characterize the shape of the inverse cone damage rupture surface, based on Mindlin's stress solution and the peak shear stress control theory. The interface failure stress distribution was obtained, the equations for the bearing capacities under 2 damage forms were given. Five domestic TTA suspension bridges were taken for example and verification in both damage forms, and the effects of different parameters on the TTA load-bearing capacity were analyzed. The results show that, the main source for the bearing capacity is the cohesive force on the fracture surface, which is more than 50% of the total. The bearing capacity increases linearly with the length and the cohesion force, and grows with the inclination angle at a slowing rate. The bearing capacity would first increase and then decrease with the inclination angle under the interface failure form. These derived results are basically in agreement with those previous experimental and numerical results. The analysis of the proposed analytical displacement curves indicates that, the working process of the TTA has 3 visible stages, and the final failure mode is a combination of the interfacial failure and the inverse cone failure.
  • (Contributed by TANG Guangwu, M. AMM Editorial Board)
  • loading
  • [1]
    刘新荣, 韩亚峰, 景瑞, 等. 隧道锚承载特性、变形破坏特征及典型案例分析[J]. 地下空间与工程学报, 2019, 15(6): 1780-1791. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201906025.htm

    LIU Xinrong, HAN Yafeng, JING Rui, et al. Bearing characteristics, deformation failure characteristics and typical case studies of tunnel-type anchorage[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(6): 1780-1791. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201906025.htm
    [2]
    余美万, 张奇华, 喻正富, 等. 基于夹持效应的普立特大桥隧道锚现场模型试验研究[J]. 岩石力学与工程学报, 2015, 34(2): 261-270. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502006.htm

    YU Meiwan, ZHANG Qihua, YU Zhengfu, et al. Field model experiment on clamping effect of tunnel-type anchorage at Puli Bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(2): 261-270. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502006.htm
    [3]
    廖明进, 王全才, 袁从华, 等. 基于楔形效应的隧道锚抗拔承载能力研究[J]. 岩土力学, 2016, 37(1): 185-192. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601023.htm

    LIAO Mingjin, WANG Quancai, YUAN Conghua, et al. Research on the pull-out capacity of the tunnel-type anchorage based on wedge-effect[J]. Rock and Soil Mechanics, 2016, 37(1): 185-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601023.htm
    [4]
    王东英, 尹小涛, 杨光华. 悬索桥隧道式锚碇夹持效应的试验研究[J]. 岩土力学, 2021, 42(4): 1003-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104013.htm

    WANG Dongying, YIN Xiaotao, YANG Guanghua. Experimental study on the clamping effect of suspension bridge tunnel-type anchorage[J]. Rock and Soil Mechanics, 2020, 42(4): 1003-1011. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202104013.htm
    [5]
    HAN Yafeng, LIU Xinrong, LI Dongliang, et al. Model test on the bearing behaviors of the tunnel-type anchorage in soft rock with underlying weak interlayers[J]. Bulletin of Engineering Geology and the Environment, 2020, 79: 1023-1040. doi: 10.1007/s10064-019-01564-5
    [6]
    汤华, 熊晓荣, 邓琴, 等. 普立特大桥隧道式锚碇围岩系统的变形规律及破坏机制[J]. 上海交通大学学报, 2015, 49(7): 961-967. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201507008.htm

    TANG Hua, XIONG Xiaorong, DENG Qin, et al. Deformation law and failed mechanism of anchorage-surrounding rock system of Puli Extra-Large Bridge[J]. Journal of Shanghai Jiaotong University, 2015, 49(7): 961-967. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201507008.htm
    [7]
    江南, 冯君. 铁路悬索桥隧道式锚碇受载破裂力学行为研究[J]. 岩石力学与工程学报, 2018, 37(7): 1659-1670. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201807010.htm

    JIANG Nan, FENG Jun. Damage behavior of tunnel-type anchorages of railway suspension bridges under loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1659-1670. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201807010.htm
    [8]
    张奇华, 余美万, 喻正富, 等. 普立特大桥隧道锚现场模型试验研究: 抗拔能力试验[J]. 岩石力学与工程学报, 2015, 34(1): 93-103. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502006.htm

    ZHANG Qihua, YU Meiwan, YU Zhengfu, et al. Field model tests on pullout capacity of tunnel-type anchorages of Puli Bridge[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(1): 93-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201502006.htm
    [9]
    余美万, 张奇华, 高利萍, 等. 金东大桥隧道锚现场模型试验及承载能力分析[J]. 岩土工程学报, 2021, 43(2): 338-346. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202102019.htm

    YU Meiwan, ZHANG Qihua, GAO Liping, et al. Field model tests and bearing capacity analysis of tunnel anchorage of Jindong Bridge[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 338-346. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202102019.htm
    [10]
    庞正江, 孙豪杰, 赖其波, 等. 1∶10隧道锚缩尺模型的变形及应力特性[J]. 岩石力学与工程学报, 2015, 34(S2): 3972-3978. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2042.htm

    PANG Zhengjiang, SUN Haojie, LAI Qibo, et al. Deformation and stress characteristics of tunnel-type anchorage model on scale 1∶10[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2): 3972-3978. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S2042.htm
    [11]
    李栋梁, 刘新荣, 李俊江, 等. 浅埋软岩隧道式锚碇稳定性原位模型试验研究[J]. 岩土工程学报, 2017, 39(11): 2078-2087. doi: 10.11779/CJGE201711016

    LI Dongliang, LIU Xinrong, LI Junjiang, et al. Stability of shallowly buried soft rock tunnel anchorage by in-situ model tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(11): 2078-2087. (in Chinese) doi: 10.11779/CJGE201711016
    [12]
    王东英, 汤华, 尹小涛, 等. 隧道式锚碇承载机制的室内模型试验探究[J]. 岩石力学与工程学报, 2019, 38(S1): 2690-2703. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1010.htm

    WANG Dongying, TANG Hua, YIN Xiaotao, et al. Study on the bearing mechanism of tunnel-type anchorage based on laboratory model test[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S1): 2690-2073. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1010.htm
    [13]
    JIANG Nan, WANG Duo, FENG Jun, et al. Bearing mechanism of a tunnel-type anchorage in a railway suspension bridge[J]. Journal of Mountain Science, 2021, 18(8): 2143-2158. doi: 10.1007/s11629-020-6162-8
    [14]
    江南, 黄林, 冯君, 等. 铁路悬索桥隧道式锚碇设计计算方法研究[J]. 岩土力学, 2020, 41(3): 999-1009. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003031.htm

    JIANG Nan, HUANG Lin, FENG Jun, et al. Research on design and calculation method of tunnel-type anchorage of railway suspension bridge[J]. Rock and Soil Mechanics, 2020, 41(3): 999-1009. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202003031.htm
    [15]
    张奇华, 李玉婕, 余美万, 等. 隧道锚围岩抗拔机制及抗拔力计算模式初步研究[J]. 岩土力学, 2017, 38(3): 810-820. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703025.htm

    ZHANG Qihua, LI Yujie, YU Meiwan, et al. Preliminary study of pullout mechanisms and computational model of pullout force for rocks surrounding tunnel-type anchorage[J]. Rock and Soil Mechanics, 2017, 38(3): 810-820. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703025.htm
    [16]
    ZHANG Qihua, LI Yujie, YU Meiwan, et al. Study of the rock foundation stability of the Aizhai Suspension Bridge over a deep canyon area in China[J]. Engineering Geology, 2015, 198 : 65-77. doi: 10.1016/j.enggeo.2015.09.012
    [17]
    施高萍, 祝江鸿, 杨建辉. 单位圆外域-洞室外域共形映射下任意开挖断面隧洞围岩应力解析解[J]. 应用数学和力学, 2020, 41(5): 541-556. doi: 10.21656/1000-0887.400220

    SHI Gaoping, ZHU Jianghong, YANG Jianhui. Analytical stress solutions around tunnels with arbitrary-excavation cross sections based on conformal mapping from a unit circle to the tunnel exterior[J]. Applied Mathematics and Mechanics, 2020, 41(5): 541-556. (in Chinese) doi: 10.21656/1000-0887.400220
    [18]
    崔建斌, 姬安召, 熊贵明. 基于Schwarz-Christoffel变换的圆形隧道围岩应力分布特征研究[J]. 应用数学和力学, 2019, 40(10): 1089-1098. doi: 10.21656/1000-0887.390326

    CUI Jianbin, JI Anzhao, XIONG Guiming. Research on surrounding rock stress distributions for circular tunnels based on the Schwarz-Christoffel transformation[J]. Applied Mathematics and Mechanics, 2019, 40(10): 1089-1098. (in Chinese) doi: 10.21656/1000-0887.390326
    [19]
    LIU Xinrong, HAN Yafeng, YU Chuntao, et al. Reliability assessment on stability of tunnel-type anchorages[J]. Computers and Geotechnics, 2020, 125: 103661. doi: 10.1016/j.compgeo.2020.103661
    [20]
    王东英, 汤华, 尹小涛, 等. 基于简化力学模型的隧道锚极限承载力估值公式[J]. 岩土力学, 2020, 41(10): 3405-3414. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010027.htm

    WANG Dongying, TANG Hua, YIN Xiaotao, et al. Estimation method of ultimate bearing capacity of tunnel-type anchorage based on simplified mechanical model[J]. Rock and Soil Mechanics, 2020, 41(10): 3405-3414. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202010027.htm
    [21]
    汪海滨, 高波, 朱栓来, 等. 四渡河特大桥隧道式锚碇数值模拟[J]. 中国公路学报, 2006, 19(6): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200606013.htm

    WANG Haibin, GAO Bo, ZHU Shuanlai, et al. Numerical simulation on tunnel anchorage of Siduhe Super-long Bridge[J]. China Journal of Highway and Transport, 2006, 19(6): 73-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL200606013.htm
    [22]
    LI Y, LUO R, ZHANG Q, et al. Model test and numerical simulation on the bearing mechanism of tunnel-type anchorage[J]. Geomechanics and Engineering, 2017, 12(1): 139-160. doi: 10.12989/gae.2017.12.1.139
    [23]
    王中豪, 郭喜峰, 杨星宇. 基于人工智能算法的隧道锚承载能力评价[J]. 西南交通大学学报, 2021, 56(3): 534-540. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202103011.htm

    WANG Zhonghao, GUO Xifeng, YANG Xingyu. Bearing capacity evaluation of tunnel-type anchorage based on artificial intelligent algorithm[J]. Journal of Southwest Jiaotong University, 2021, 56(3): 534-540. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202103011.htm
    [24]
    江南. 铁路悬索桥隧道式锚碇承载机理及计算方法研究[D]. 博士学位论文. 成都: 西南交通大学, 2014.

    JIANG Nan. Research on bearing mechanism of tunnel anchorage of railway suspension bridge and its calculation method[D]. PhD Thesis. Chengdu: Southwest Jiaotong University, 2014. (in Chinese)
    [25]
    薛江红, 何赞航, 夏飞, 等. 基于偶应力理论微纳米Mindlin板的尺度效应分析[J]. 应用数学和力学, 2022, 43(7): 740-751. doi: 10.21656/1000-0887.420171

    XUE Jianghong, HE Zanhang, XIA Fei, et al. Size-dependent effects of micro-nano Mindlin plates based on the couple stress theory[J]. Applied Mathematics and Mechanics, 2022, 43(7): 740-751. (in Chinese) doi: 10.21656/1000-0887.420171
    [26]
    朱玉, 廖朝华, 彭元诚, 等. 大跨径悬索桥隧道锚设计及结构性能评价[J]. 桥梁建设, 2005(2): 44-46. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS20050200C.htm

    ZHU Yu, LIAO Chaohua, PENG Yuancheng, et al. Design and structural capacity assessment of tunnel-type anchorage for long-span suspension bridge[J]. Bridge Construction, 2005(2): 44-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS20050200C.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article Metrics

    Article views (96) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return