Volume 44 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
CUI Youjiang, WANG Baolin, WANG Kaifa. Evaluation of Fracture and its Effects on Energy Conversion Performance of Porous Foam Thermoelectric Generators[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1291-1298. doi: 10.21656/1000-0887.440147
Citation: CUI Youjiang, WANG Baolin, WANG Kaifa. Evaluation of Fracture and its Effects on Energy Conversion Performance of Porous Foam Thermoelectric Generators[J]. Applied Mathematics and Mechanics, 2023, 44(11): 1291-1298. doi: 10.21656/1000-0887.440147

Evaluation of Fracture and its Effects on Energy Conversion Performance of Porous Foam Thermoelectric Generators

doi: 10.21656/1000-0887.440147
  • Received Date: 2023-05-12
  • Rev Recd Date: 2023-05-24
  • Publish Date: 2023-11-01
  • The thermoelectric generator could convert the waste heat into electricity and reduce carbon dioxide emissions. This meets the national development needs for energy conservation and emission reduction, and finally helps realize the carbon neutrality. The heat and electric conduction model was established to explain the internal mechanism of high output power of the porous thermoelectric foam. The effects of geometry and porosity on the fracture failure of the porous thermoelectric foam were also discussed. Then, the influential mechanism of fracture on the energy conversion performance of the porous thermoelectric foam was revealed. The results show that, the interfacial shear stress between the thermoelectric foam and the metal layer will decrease with the porosity. As long as an internal crack of the porous thermoelectric foam starts to extend, it will not stop until the device is completely broken. Moreover, the output power will first increase to the peak value and then decrease with the crack propagation. This is because the crack propagation indirectly raises the porosity of the thermoelectric foam and the contact area between the thermoelectric foam and the waste heat, and in turn promotes the output power of the thermoelectric device. With further crack propagation, both the thermal conductivity and the electrical conductivity of the thermoelectric foam will weaken, and the output power of the thermoelectric foam will decrease.
  • loading
  • [1]
    CUI Y J, WANG B L, WANG K F, et al. Power output evaluation of a porous annular thermoelectric generator for waste heat harvesting[J]. International Journal of Heat and Mass Transfer, 2019, 137: 979-989. doi: 10.1016/j.ijheatmasstransfer.2019.03.157
    [2]
    CUI Y J, WANG B L, WANG K F, et al. Fracture mechanics analysis of delamination in a thermoelectric pn-junction sandwiched by an insulating layer[J]. Applied Mathematics and Mechanics (English Edition), 2018, 39(10): 1477-1484. doi: 10.1007/s10483-018-2379-8
    [3]
    CUI Y J, WANG B L, WANG K F, et al. Theoretical model of fatigue crack growth of a thermoelectric pn-junction bonded to an elastic substrate[J]. Mechanics of Materials, 2020, 151: 103623. doi: 10.1016/j.mechmat.2020.103623
    [4]
    SOLEIMANI Z, ZORAS S, CERANIC B, et al. A comprehensive review on the output voltage/power of wearable thermoelectric generators concerning their geometry and thermoelectric materials[J]. Nano Energy, 2021, 89(A): 106325.
    [5]
    LU Y, LI X, CAI K, et al. Enhanced-Performance PEDOT: PSS/Cu2Se-based composite films for wearable thermoelectric power generators[J]. ACS Applied Materials and Interfaces, 2021, 12: 631-638.
    [6]
    WANG L P, HU B L, ZHANG F Y, et al. A highly stable elastic electrode via direct covalent crosslinking for strain sensors[J]. Journal of Materials Chemistry C, 2023, 12: 4235-4242.
    [7]
    XIN B B, WANG L, FEBVRIER A L, et al. Mechanically flexible thermoelectric hybrid thin films by introduction of PEDOT: PSS in nanoporous Ca3Co4O9[J]. ACS Omega, 2022, 7(27): 23988-23994. doi: 10.1021/acsomega.2c02875
    [8]
    KARALIS G, TZOUNIS L, MYTAFIDES C K, et al. A high performance flexible and robust printed thermoelectric generator based on hybridized Te nanowires with PEDOT: PSS[J]. Applied Energy, 2021, 294: 117004. doi: 10.1016/j.apenergy.2021.117004
    [9]
    LIU J, LIU Q, LIN S P, et al. Wearable thermoelectric generators: materials, structures, fabrications, and applications[J]. Physica Status Solidi-Rapid Research Letters, 2023, 17(7): 2200502. doi: 10.1002/pssr.202200502
    [10]
    RAMESH V P, SARGOLZAEIAVAL Y, NEUMANN T, et al. Flexible thermoelectric generator with liquid metal interconnects and low thermal conductivity silicone filler[J]. NPJ Flexible Electronics, 2021, 5(1): 5. doi: 10.1038/s41528-021-00101-3
    [11]
    CUI Y J, LIU C, WANG K F, et al. Effect of negative Poisson's ratio architecture on fatigue life and output power of flexible wearable thermoelectric generators[J]. Engineering Fracture Mechanics, 2023, 281: 109142. doi: 10.1016/j.engfracmech.2023.109142
    [12]
    CUI Y J, WANG B L, WANG K F, et al. An analytical model to evaluate influence of negative Poisson's ratio architecture on fatigue life and energy conversion performance of wearable thermoelectric generator[J]. International Journal of Solids and Structures, 2022, 258: 112000. doi: 10.1016/j.ijsolstr.2022.112000
    [13]
    SELVAN K V, HASAN M N, ALI S M, et al. State-of-the-art reviews and analyses of emerging research findings and achievements of thermoelectric materials over the past years[J]. Journal of Electronic Materials, 2019, 48: 745-777. doi: 10.1007/s11664-018-06838-4
    [14]
    WEI W, LI J W, ZHANG H T, et al. Macrostructural influence on the thermoelectric properties of SiC ceramics[J]. Scripta Materialia, 2007, 57(12): 1081-1084. doi: 10.1016/j.scriptamat.2007.08.036
    [15]
    WANG N, HE H, LI X, et al. Thermoelectric properties of Nb-doped SrTiO3 ceramics enhanced by potassium titanate nanowires addition[J]. Journal of the Ceramic Society of Japan, 2010, 118: 1098-1101.
    [16]
    CUI Y J, WANG K F, WANG B L, et al. A comprehensive analysis of delamination and thermoelectric performance of thermoelectric pn-junctions with temperature-dependent material properties[J]. Composite Structures, 2019, 229: 111484. doi: 10.1016/j.compstruct.2019.111484
    [17]
    REDDY E S, NOUDEM J G, GOUPIL C. Open porous foam oxide thermoelectric elements for hot gases and liquid environments[J]. Energy Conversion and Management, 2007, 48(4): 1251-1254. doi: 10.1016/j.enconman.2006.09.025
    [18]
    NOUDEM J G, LEMONNIER S, PREVEL M, et al. Thermoelectric ceramics for generators[J]. Journal of the European Ceramic Society, 2008, 28(1): 41-48. doi: 10.1016/j.jeurceramsoc.2007.05.012
    [19]
    NITHYANANDAM K, MAHAJAN R L. Evaluation of metal foam based thermoelectric generators for automobile waste heat recovery[J]. International Journal of Heat and Mass Transfer, 2018, 122: 877-883. doi: 10.1016/j.ijheatmasstransfer.2018.02.029
    [20]
    YILBAS B S, AKHTAR S S, SAHIN A Z. Thermal and stress analyses in thermoelectric generator with tapered and rectangular pin configurations[J]. Energy, 2016, 114: 52-63. doi: 10.1016/j.energy.2016.07.168
    [21]
    SHITTU S, LI G Q, ZHAO X D, et al. High performance and thermal stress analysis of a segmented annular thermoelectric generator[J]. Energy Conversion and Management, 2019, 184: 180-193. doi: 10.1016/j.enconman.2019.01.064
    [22]
    朱明明, 李联和. 含正三角形孔口热电材料的断裂力学分析[J]. 应用数学和力学, 2021, 42(6): 656-664. doi: 10.21656/1000-0887.410232

    ZHU Mingming, LI Lianhe. Fracture mechanics analysis of thermoelectric materials with equilateral triangle holes[J]. Applied Mathematics and Mechanics, 2021, 42(6): 656-664. (in Chinese) doi: 10.21656/1000-0887.410232
    [23]
    徐华, 曹政, 邹云鹏, 等. 裂纹面分布加载裂尖SIFs分析的广义参数Williams单元[J]. 应用数学和力学, 2022, 43(7): 752-760. doi: 10.21656/1000-0887.420317

    XU Hua, CAO Zheng, ZOU Yunpeng, et al. Williams elements with generalized degrees of freedom for crack tip SIFs analysis under crack surface distributed loading[J]. Applied Mathematics and Mechanics, 2022, 43(7): 752-760. (in Chinese) doi: 10.21656/1000-0887.420317
    [24]
    CUI Y J, WANG B L, LI J E, et al. Performance evaluation and lifetime prediction of a segmented photovoltaic-thermoelectric hybrid system[J]. Energy Conversion and Management, 2020, 211: 112744. doi: 10.1016/j.enconman.2020.112744
    [25]
    TADA H, PAUL C, GEORGE R. The Stress Analysis of Cracks Handbook[M]. 3rd ed. ASME Press, 2000.
    [26]
    张晓敏, 万凌, 严波, 等. 断裂力学[M]. 北京: 清华大学出版社, 2012: 142-143.

    ZHANG Xiaomin, WAN Ling, YAN Bo, et al. Fracture Mechanics[M]. Beijing: Tsinghua University Press, 2012: 142-143. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (573) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return