Volume 45 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
ZHOU Sili, SUN Gang, WANG Cong. Application Study on the DDPG Method for Designing Variable Camber Airfoils/Wings Under Buffeting Constraints[J]. Applied Mathematics and Mechanics, 2024, 45(1): 45-60. doi: 10.21656/1000-0887.440204
Citation: ZHOU Sili, SUN Gang, WANG Cong. Application Study on the DDPG Method for Designing Variable Camber Airfoils/Wings Under Buffeting Constraints[J]. Applied Mathematics and Mechanics, 2024, 45(1): 45-60. doi: 10.21656/1000-0887.440204

Application Study on the DDPG Method for Designing Variable Camber Airfoils/Wings Under Buffeting Constraints

doi: 10.21656/1000-0887.440204
  • Received Date: 2023-07-04
  • Rev Recd Date: 2023-09-27
  • Publish Date: 2024-01-01
  • The application of the variable camber technology has promising results in improving the lift-to-drag performance during the cruise phase, particularly under multi-lift conditions. This improvement is crucial for enhancing the economic benefits of the entire flight. A smooth and continuous flow separation function was developed to constrain the buffeting performance. An optimization model for cruise performances under multi-lift conditions of wing cross sections was constructed through combination of this function with the variable camber technology and an artificial neural network surrogate model. The deep deterministic policy gradient (DDPG) method was used to optimize this model, resulting in a cruise average lift-to-drag ratio improvement of 6.8% under buffeting constraints. This improvement surpasses the results obtained by other optimization algorithms, such as the particle swarm optimization (PSO) and the improved gray wolf optimization (GWO). The results of the generation and analysis of 2 conical swept wings with the unoptimized and optimized airfoils, show the contribution of the 2D variable camber airfoil optimization to 3D wings.
  • (Contributed by SUN Gang, M. AMM Editorial Board)
  • loading
  • [1]
    郝璇, 张青青, 苏诚, 等. 民用客机可变弯度机翼优化设计研究[J]. 航空工程进展, 2022, 13(4): 25-36.

    HAO Xuan, ZHANG Qingqing, SU Cheng, et al. Research on variable camber wing optimization design of passenger aircraft[J]. Advances in Aeronautical Science and Engineering, 2022, 13(4): 25-36. (in Chinese)
    [2]
    URNES J, NGUYEN N, IPPOLITO C, et al. A mission adaptive variable camber flap control system to optimize high lift and cruise lift to drag ratios of future N+3 transport aircraft[C]// 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Grapevine, Texas, USA: AIAA, 2013.
    [3]
    KAUL U K, NGUYEN N T. Drag optimization study of variable camber continuous trailing edge flap (VCCTEF) using OVERFLOW[C]// 32nd AIAA Applied Aerodynamics Conference. Atlanta, GA, USA: AIAA Aviation, 2014.
    [4]
    NIU W, ZHANG Y, CHEN H, et al. Numerical study of a supercritical airfoil/wing with variable-camber technology[J]. Chinese Journal of Aeronautics, 2020, 33(7): 1850-1866. doi: 10.1016/j.cja.2020.01.008
    [5]
    郭同彪, 白俊强, 杨体浩. 后缘连续变弯度对跨声速翼型气动特性的影响[J]. 航空学报, 2016, 37(2): 513-521.

    GUO Tongbiao, BAI Junqiang, YANG Tihao. Influence of continuous trailing-edge variable camber on aerodynamic characteristics of transonic airfoils[J]. Chinese Journal of Aeronautics, 2016, 37(2): 513-521. (in Chinese)
    [6]
    LEE B. Self-sustained shock oscillations on airfoils at transonic speeds[J]. Progress in Aerospace Sciences, 2001, 37(2): 147-196. doi: 10.1016/S0376-0421(01)00003-3
    [7]
    ZHAO Y, DAI Z, TIAN Y, et al. Flow characteristics around airfoils near transonic buffet onset conditions[J]. Chinese Journal of Aeronautics, 2020, 33(5): 1405-1420. doi: 10.1016/j.cja.2019.12.022
    [8]
    KENWAY G K W, MARTINS J R R A. An separation-based constraint for high fidelity aerodynamic shape optimization[C]// 54th AIAA Aerospace Sciences Meeting. San Diego, CA, USA: AIAA SciTech, 2016.
    [9]
    雷锐午, 白俊强, 许丹阳, 等. 考虑抖振特性的变弯度机翼设计研究[J]. 中国科学: 技术科学, 2020, 50(2): 161-174.

    LEI Ruiwu, BAI Junqiang, XU Danyang, et al. Research on variable camber wing of civil aircraft considering buffeting characteristics[J]. Science China: Technological, 2020, 50(2): 161-174. (in Chinese)
    [10]
    PETROCCHI A, BARAKOS G N. Buffet boundary prediction using RANS-based criteria and adjoint methods[J]. Aerospace Science and Technology, 2022, 126: 107664. doi: 10.1016/j.ast.2022.107664
    [11]
    LAWSON S G, GREENWELL D, QUINN M K. Characterisation of buffet on a civil aircraft wing[C]// 54th AIAA Aerospace Sciences Meeting. San Diego, CA, USA: AIAA SciTech, 2016.
    [12]
    ZHOU S K, LE H N, LUU K, et al. Deep reinforcement learning in medical imaging: a literature review[J]. Medical Image Analysis, 2021, 73: 102193. doi: 10.1016/j.media.2021.102193
    [13]
    马岽奡, 唐娉, 赵理君, 等. 深度学习图像数据增广方法研究综述[J]. 中国图象图形学报, 2021, 26(3): 487-502.

    MA Dongao, TANG Ping, ZHAO Lijun, et al. Review of data augmentation for image in deep learning[J]. Journal of Image and Graphics, 2021, 26(3): 487-502. (in Chinese)
    [14]
    ELALLID B B, BENAMAR N, HAFID A S, et al. A comprehensive survey on the application of deep and reinforcement learning approaches in autonomous driving[J]. Journal of King Saud University: Computer and Information Sciences, 2022, 34(9): 7366-7390. doi: 10.1016/j.jksuci.2022.03.013
    [15]
    韩胜明, 肖芳, 程纬森. 深度强化学习在自动驾驶系统中的应用综述[J]. 西华大学学报(自然科学版), 2023, 42(4): 25-31.

    HAN Shengming, XIAO Fang, CHENG Weisen. Overview of applied on deep reinforcement learning in autonomous driving systems[J]. Journal of Xihua University(Natural Science Edition), 2023, 42(4): 25-31. (in Chinese)
    [16]
    VIQUERAT J, RABAULT J, KUHNLE A, et al. Direct shape optimization through deep reinforcement learning[J]. Journal of Computational Physics, 2021, 428: 110080. doi: 10.1016/j.jcp.2020.110080
    [17]
    BHOLA S, PAWAR S, BALAPRAKASH P, et al. Multi-fidelity reinforcement learning framework for shape optimization[J]. Journal of Computational Physics, 2022, 482: 112018.
    [18]
    YAN X, ZHU J, KUANG M, et al. Aerodynamic shape optimization using a novel optimizer based on machine learning techniques[J]. Aerospace Science and Technology, 2019, 86: 826-835. doi: 10.1016/j.ast.2019.02.003
    [19]
    QIN S, WANG S, WANG L, et al. Multi-objective optimization of cascade blade profile based on reinforcement learning[J]. Applied Sciences, 2020, 11(1): 106. doi: 10.3390/app11010106
    [20]
    KAUL U K, NGUYEN N T. Drag characterization study of variable camber continuous trailing edge flap[J]. Journal of Fluids Engineering, 2018, 140(10): 101108. doi: 10.1115/1.4040070
    [21]
    NGUYEN N, TRINH K, REYNOLDS K, et al. Elastically shaped wing optimization and aircraft concept for improved cruise efficiency[C]// 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Grapevine, Texas, USA: AIAA, 2013.
    [22]
    TING E, CHAPARRO D, NGUYEN N, et al. Optimization of variable-camber continuous trailing-edge flap configuration for drag reduction[J]. Journal of Aircraft, 2018, 55(6): 2217-2239. doi: 10.2514/1.C034810
    [23]
    LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[R/OL]. (2019-07-05)[2023-09-27]. https://arxiv.org/abs/1509.02971.
    [24]
    VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the fourth AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4): 1070-1089. doi: 10.2514/1.C032418
    [25]
    LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the fifth computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4): 1194-1213. doi: 10.2514/1.C032389
    [26]
    LYU Z, KENWAY G, MARTINS J. Aerodynamic shape optimization investigations of the common research model wing benchmark[J]. AIAA Journal, 2014, 53(4): 968-985.
    [27]
    LEE C, KOO D, ZINGG D W. Comparison of B-spline surface and free-form deformation geometry control for aerodynamic optimization[J]. AIAA Journal, 2016, 55(1): 1-13.
    [28]
    COOK P H, MCDONALD M A, FIRMIN M C P. Aerofoil RAE2822: pressure distributions, and boundary layer and wake measurements[C]//Experimental Data Base for Computer Program Assessment. AGARD Advisory Report. 1979: 138.
    [29]
    白文. 经典跨声速翼型RAE2822数据分析[J]. 空气动力学学报, 2022, 41(16): 55-70.

    BAI Wen. Analyses of wind-tunnel test data of the transonic airfoil RAE2822[J]. Acta Aerodynamica Sinica, 2022, 41(16): 55-70. (in Chinese)
    [30]
    CELLA U, QUAGLIARELLA D, DONELLI R, et al. Design and test of the UW5006 transonic natural-laminar-flow wing[J]. Journal of Aircraft, 2010, 47(3): 783-795. doi: 10.2514/1.40932
    [31]
    LI F W. Airfoil Design, in Aerodynamic Theory[M]. Northeast Poly-Technical University Press, 2007.
    [32]
    XU Z, HAN Z, SONG W. An improved 2.75D method relating pressure distributions of 2D airfoils and 3D wings[J]. Aerospace Science and Technology, 2022, 128: 107789. doi: 10.1016/j.ast.2022.107789
    [33]
    ZHAO T, ZHANG Y, CHEN H, et al. Supercritical wing design based on airfoil optimization and 2.75D transformation[J]. Aerospace Science and Technology, 2016, 56: 168-182. doi: 10.1016/j.ast.2016.07.010
    [34]
    STREIT T, WICHMANN G, HATZBACH F, et al. Implications of conical flow for laminar wing design and analysis[C]//AIAA Applied Aerodynamics Conference. San Diego, CA, USA: AIAA, 2011.
    [35]
    LIEM R P, KENWAY G K W, MARTINS J R R A. Multimission aircraft fuel-burn minimization via multipoint aerostructural optimization[J]. AIAA Journal, 2014, 53(1): 104-122.
    [36]
    王沐晨, 李立州, 张珺, 等. 基于卷积神经网络气动力降阶模型的翼型优化方法[J]. 应用数学和力学, 2022, 43(1): 77-83. doi: 10.21656/1000-0887.420137

    WANG Muchen, LI Lizhou, ZHANG Jun, et al. An airfoil optimization method based on the convolutional neural network aerodynamic reduced order model[J]. Applied Mathematics and Mechanics, 2022, 43(1): 77-83. (in Chinese) doi: 10.21656/1000-0887.420137
    [37]
    张珺, 李立州, 原梅妮. 径向基函数参数化翼型的气动力降阶模型优化[J]. 应用数学和力学, 2019, 40(3): 250-258. doi: 10.21656/1000-0887.390187

    ZHANG Jun, LI Lizhou, YUAN Meini. Optimization of RBF parameterized airfoils with the aerodynamic ROM[J]. Applied Mathematics and Mechanics, 2019, 40(3): 250-258. (in Chinese) doi: 10.21656/1000-0887.390187
    [38]
    KENNEDY J, EBERHART R. Particle swarm optimization[C]//Icnn 95-International Conference on Neural Networks. Perth, WA, Australia: IEEE, 1995.
    [39]
    张贾奎, 崔利杰, 郭庆, 等. 基于Tent混沌序列的灰狼优化算法[J]. 微电子学与计算机, 2018, 35(6): 11-16.

    ZHANG Jiakui, CUI Lijie, GUO Qing, et al. Grey wolf optimizer based on Tent chaotic sequence[J]. Microelectronics and Computer, 2018, 35(6): 11-16. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(3)

    Article Metrics

    Article views (154) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return