Citation: | WANG Xinxin, ZHAO Wandong, LIANG Jianhan. Investigation of the Immersed Boundary Method Based on the Inverse Distance Weighted Interpolation Reconstruction[J]. Applied Mathematics and Mechanics, 2025, 46(6): 687-696. doi: 10.21656/1000-0887.440360 |
[1] |
PESKIN C S. The immersed boundary method[J]. Acta Numerica, 2002, 11: 479-517. doi: 10.1017/S0962492902000077
|
[2] |
MITTAL R, IACCARINO G. Immersed boundary methods[J]. Annual Review of Fluid Mechanics, 2005, 37: 239-261. doi: 10.1146/annurev.fluid.37.061903.175743
|
[3] |
CLARKE D K, SALAS M D, HASSAN H A. Euler calculations for multielement airfoils using Cartesian grids[J]. AIAA Journal, 1986, 24(3): 353-358. doi: 10.2514/3.9273
|
[4] |
UDAYKUMAR H S, SHYY W, RAO M M. ELAFINT: a mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries[J]. International Journal for Numerical Methods in Fluids, 1996, 22(8): 691-712. doi: 10.1002/(SICI)1097-0363(19960430)22:8<691::AID-FLD371>3.0.CO;2-U
|
[5] |
YE T, MITTAL R, UDAYKUMAR H S, et al. An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries[J]. Journal of Computational Physics, 1999, 156(2): 209-240. doi: 10.1006/jcph.1999.6356
|
[6] |
FADLUN E A, VERZICCO R, ORLANDI P, et al. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations[J]. Journal of Computational Physics, 2000, 161(1): 35-60. doi: 10.1006/jcph.2000.6484
|
[7] |
LUO H, MITTAL R, ZHENG X, et al. An immersed-boundary method for flow-structure interaction in biological systems with application to phonation[J]. Journal of Computational Physics, 2008, 227(22): 9303-9332. doi: 10.1016/j.jcp.2008.05.001
|
[8] |
TSENG Y H, FERZIGER J H. A ghost-cell immersed boundary method for flow in complex geometry[J]. Journal of Computational Physics, 2003, 192(2): 593-623. doi: 10.1016/j.jcp.2003.07.024
|
[9] |
KIM J, KIM D, CHOI H. An immersed-boundary finite-volume method for simulations of flow in complex geometries[J]. Journal of Computational Physics, 2001, 171(1): 132-150. doi: 10.1006/jcph.2001.6778
|
[10] |
GHIAS R, MITTAL R, DONG H. A sharp interface immersed boundary method for compressible viscous flows[J]. Journal of Computational Physics, 2007, 225(1): 528-553. doi: 10.1016/j.jcp.2006.12.007
|
[11] |
GILMANOV A, SOTIROPOULOS F. A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies[J]. Journal of Computational Physics, 2005, 207(2): 457-492. doi: 10.1016/j.jcp.2005.01.020
|
[12] |
KIM D, CHOI H. Immersed boundary method for flow around an arbitrarily moving body[J]. Journal of Computational Physics, 2006, 212(2): 662-680. doi: 10.1016/j.jcp.2005.07.010
|
[13] |
SCHNEIDERS L, HARTMANN D, MEINKE M, et al. An accurate moving boundary formulation in cut-cell methods[J]. Journal of Computational Physics, 2013, 235: 786-809. doi: 10.1016/j.jcp.2012.09.038
|
[14] |
FAVIER J, REVELL A, PINELLI A. A lattice Boltzmann-immersed boundary method to simulate the fluid interaction with moving and slender flexible objects[J]. Journal of Computational Physics, 2014, 261: 145-161. doi: 10.1016/j.jcp.2013.12.052
|
[15] |
MITTAL R, DONG H, BOZKURTTAS M, et al. A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries[J]. Journal of Computational Physics, 2008, 227(10): 4825-4852. doi: 10.1016/j.jcp.2008.01.028
|
[16] |
TORO E F. Riemann Solvers and Numerical Methods for Fluid Dynamics: a Practical Introduction[M]. Berlin, Heidelberg: Springer, 2013.
|
[17] |
郑素佩, 李霄, 赵青宇, 等. 求解二维浅水波方程的旋转混合格式[J]. 应用数学和力学, 2022, 43(2): 176-186. doi: 10.21656/1000-0887.420063
ZHENG Supei, LI Xiao, ZHAO Qingyu, et al. A rotated mixed scheme for solving 2D shallow water equations[J]. Applied Mathematics and Mechanics, 2022, 43(2): 176-186. (in Chinese) doi: 10.21656/1000-0887.420063
|
[18] |
HARTEN A, LAX P D, VAN LEER B. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws[J]. SIAM Review, 1983, 25(1): 35-61. doi: 10.1137/1025002
|
[19] |
OSHER S, FEDKIW R, PIECHOR K. Level set methods and dynamic implicit surfaces[J]. Applied Mechanics Reviews, 2004, 57(3): B15. http://scans.hebis.de/10/87/16/10871634_toc.pdf
|
[20] |
李慧玲, 胡晓磊, 余子寒, 等. 玻璃微珠液滴碰撞分离过程数值研究[J]. 应用数学和力学, 2023, 44(12): 1512-1521.
LI Huiling, HU Xiaolei, YU Zihan, et al. Numerical study on the collision-separation process of glass bead droplets[J]. Applied Mathematics and Mechanics, 2023, 44(12): 1512-1521. (in Chinese)
|
[21] |
SHEPARD D. A two-dimensional interpolation function for irregularly-spaced data[C]//Proceedings of the 1968 23 rd ACM National Conference. 1968: 517-524.
|
[22] |
FRANKE R, NIELSON G. Smooth interpolation of large sets of scattered data[J]. International Journal for Numerical Methods in Engineering, 1980, 15(11): 1691-1704. doi: 10.1002/nme.1620151110
|
[23] |
MAJUMDAR S, IACCARINO G, DURBIN P. RANS solvers with adaptive structured boundary non-conforming grids[J]. Annual Research Briefs, 2001, 1: 179. http://www.stanford.edu/group/ctr/ResBriefs01/sekhar.pdf
|
[24] |
徐维铮, 吴卫国. 三阶WENO-Z格式精度分析及其改进格式[J]. 应用数学和力学, 2018, 39(8): 946-960.
XU Weizheng, WU Weiguo. Precision analysis of the 3rd-order WENO-Z scheme and its improved scheme[J]. Applied Mathematics and Mechanics, 2018, 39(8): 946-960. (in Chinese)
|