Citation: | GAO Jingying, HE Siriguleng, QING Mei, Eerdunbuhe. An Efficient Compact Difference Scheme for the Symmetric Regularized Long Wave Equation[J]. Applied Mathematics and Mechanics, 2025, 46(3): 412-424. doi: 10.21656/1000-0887.440374 |
[1] |
SEYLER C E, FENSTERMACHER D L. A symmetric regularized-long-wave equation[J]. Physics of Fluids, 1984, 27(1): 4-7. doi: 10.1063/1.864487
|
[2] |
PEREGRINE D H. Calculations of the development of an undular bore[J]. Journal of Fluid Mechanics, 1966, 25(2): 321-330. doi: 10.1017/S0022112066001678
|
[3] |
WANG B, SUN T, LIANG D. The conservative and fourth-order compact finite difference schemes for regularized long wave equation[J]. Journal of Computational and Applied Mathematics, 2019, 356: 98-117. doi: 10.1016/j.cam.2019.01.036
|
[4] |
潘悦悦, 杨晓忠. KdV-Burgers方程的一类新本性并行差分格式[J]. 应用数学和力学, 2023, 44(5): 583-594. doi: 10.21656/1000-0887.430128
PAN Yueyue, YANG Xiaozhong. A new class of difference schemes with intrinsic parallelism for the KdV-Burgers equation[J]. Applied Mathematics and Mechanics, 2023, 44(5): 583-594. (in Chinese) doi: 10.21656/1000-0887.430128
|
[5] |
GUO B L. The spectral method for symmetric regularized wave equations[J]. Journal of Computational Mathematics, 1987, 5(4): 297-306.
|
[6] |
郑家栋, 张汝芬, 郭本瑜. SRLW方程的Fourier拟谱方法[J]. 应用数学和力学, 1989, 10(9): 843-852. http://www.applmathmech.cn/article/id/3603
ZHENG Jiadong, ZHANG Rufen, GUO Benyu. The Fourier pseudo-spectral method for the SRLW equation[J]. Applied Mathematics and Mechanics, 1989, 10(9): 843-852. (in Chinese) http://www.applmathmech.cn/article/id/3603
|
[7] |
尚亚东, 郭柏灵. 多维广义SRLW方程的Chebyshev拟谱方法分析[J]. 应用数学和力学, 2003, 24(10): 1168-1183. http://www.applmathmech.cn/article/id/1536
SHANG Yadong, GUO Boling. Analysis of Chebyshev pseudospectral method for multi-dimensional generalized SRLW equations[J]. Applied Mathematics and Mechanics, 2003, 24(10): 1168-1183. (in Chinese) http://www.applmathmech.cn/article/id/1536
|
[8] |
FANG S M, GUO B L, QIU H. The existence of global attractors for a system of multi-dimensional symmetric regularized wave equations[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(1): 61-68. doi: 10.1016/j.cnsns.2007.07.001
|
[9] |
魏剑英, 葛永斌. 一种求解三维非稳态对流扩散反应方程的高精度有限差分格式[J]. 应用数学和力学, 2022, 43(2): 187-197. doi: 10.21656/1000-0887.420151
WEI Jianying, GE Yongbin. A high-order finite difference scheme for 3D unsteady convection diffusion reaction equations[J]. Applied Mathematics and Mechanics, 2022, 43(2): 187-197. (in Chinese) doi: 10.21656/1000-0887.420151
|
[10] |
WANG T, ZHANG L, CHEN F. Conservative schemes for the symmetric regularized long wave equations[J]. Applied Mathematics and Computation, 2007, 190(2): 1063-1080. doi: 10.1016/j.amc.2007.01.105
|
[11] |
王强, 何斯日古楞. 对称正则长波方程的两层差分方法[J]. 内蒙古大学学报(自然科学版), 2016, 47(6): 568-572.
WANG Qiang, HE Siriguleng. Two-step difference method for the symmetric regularized long wave equation[J]. Journal of Inner Mongolia University (Natural Science Edition), 2016, 47(6): 568-572. (in Chinese)
|
[12] |
柏琰, 张鲁明. 对称正则长波方程的一个新的守恒差分格式[J]. 应用数学, 2009, 22(1): 130-136.
BAI Yan, ZHANG Luming. A new conservative finite difference scheme for symmetric regularized long wave equations[J]. Mathematica Applicata, 2009, 22(1): 130-136. (in Chinese)
|
[13] |
YIMNET S, WONGSAIJAI B, ROJSIRAPHISAL T, et al. Numerical implementation for solving the symmetric regularized long wave equation[J]. Applied Mathematics and Computation, 2016, 273: 809-825. doi: 10.1016/j.amc.2015.09.069
|
[14] |
NIE T. A decoupled and conservative difference scheme with fourth-order accuracy for the symmetric regularized long wave equations[J]. Applied Mathematics and Computation, 2013, 219(17): 9461-9468. doi: 10.1016/j.amc.2013.03.076
|
[15] |
HU J, ZHENG K, ZHENG M. Numerical simulation and convergence analysis of a high-order conservative difference scheme for SRLW equation[J]. Applied Mathematical Modelling, 2014, 38(23): 5573-5581. doi: 10.1016/j.apm.2014.04.062
|
[16] |
KERDBOON J, YIMNET S, WONGSAIJAI B, et al. Convergence analysis of the higher-order global mass-preserving numerical method for the symmetric regularized long-wave equation[J]. International Journal of Computer Mathematics, 2021, 98(5): 869-902. doi: 10.1080/00207160.2020.1792451
|
[17] |
HE Y, WANG X, CHENG H, et al. Numerical analysis of a high-order accurate compact finite difference scheme for the SRLW equation[J]. Applied Mathematics and Computation, 2022, 418: 126837. doi: 10.1016/j.amc.2021.126837
|
[18] |
LI S. Numerical study of a conservative weighted compact difference scheme for the symmetric regularized long wave equations[J]. Numerical Methods for Partial Differential Equations, 2019, 35(1): 60-83. doi: 10.1002/num.22285
|
[19] |
HE Y Y, WANG X F, ZHONG R H. A new linearized fourth-order conservative compact difference scheme for the SRLW equations[J]. Advances in Computational Mathematics, 2022, 48: 27. doi: 10.1007/s10444-022-09951-5
|
[20] |
YANG X J, ZHANG L, GE Y B. High-order compact finite difference schemes for solving the regularized long-wave equation[J]. Applied Numerical Mathematics, 2023, 185: 165-187. doi: 10.1016/j.apnum.2022.11.016
|
[21] |
GAO J Y, HE S, BAI Q M, et al. A time two-mesh finite difference numerical scheme for the symmetric regularized long wave equation[J]. Fractal and Fractional, 2023, 7(6): 487. doi: 10.3390/fractalfract7060487
|
[22] |
GAO J Y, BAI Q M, HE S, et al. New two-level time-mesh difference scheme for the symmetric regularized long wave equation[J]. Axioms, 2023, 12(11): 1057. doi: 10.3390/axioms12111057
|