Citation: | ZHANG Jiahao, DENG Dingwen. The 4th- and 6th-Order Richardson Extrapolation Methods for Solving 3D Nonlinear Nerve Conduction Equations[J]. Applied Mathematics and Mechanics, 2025, 46(6): 800-808. doi: 10.21656/1000-0887.450021 |
[1] |
PAO C V. A mixed initial boundary-value problem arising in neurophysiology[J]. Journal of Mathematical Analysis and Applications, 1975, 52 (1): 105-119.
|
[2] |
PONCE G. Global existence of small solutions to a class of nonlinear evolution equations[J]. Nonlinear Analysis: Theory, Methods & Applications, 1985, 9 (5): 399-418.
|
[3] |
刘亚成, 于涛. 神经传播型方程解的blow-up[J]. 应用数学学报, 1995, 18 (2): 264-272.
LIU Yacheng, YU Tao. Blow-up of solutions for equation of nerve conduction type[J]. Acta Mathematicae Applicatae Sinica, 1995, 18 (2): 264-272. (in Chinese)
|
[4] |
万维明, 刘亚成. 神经传播型方程初边值问题解的长时间行为[J]. 应用数学学报, 1999, 22 (2): 311-314.
WAN Weiming, LIU Yacheng. Long-time behavier of initial boundary problem for equation of nerve conduction[J]. Acta Mathematicae Applicatae Sinica, 1999, 22 (2): 311-314. (in Chinese)
|
[5] |
MOLL V, ROSENCRANS S I. Calculation of the threshold surface for nerve equations[J]. SIAM Journal on Applied Mathematics, 1990, 50 (5): 1419-1441.
|
[6] |
DENG S J, WANG W K, ZHAO H L. Existence theory and Lp estimates for the solution of nonlinear viscous wave equation[J]. Nonlinear Analysis: Real World Applications, 2010, 11 (5): 4404-4414.
|
[7] |
BUCKINGHAM M J. Causality, Stokes' wave equation, and acoustic pulse propagation in a viscous fluid[J]. Physical Review E, 2005, 72 (2): 026610.
|
[8] |
DAI W, NASSAR R. A finite difference scheme for solving a three-dimensional heat transport equation in a thin film with microscale thickness[J]. International Journal for Numerical Methods in Engineering, 2001, 50 (7): 1665-1680.
|
[9] |
DAI W, NASSAR R. A compact finite difference scheme for solving a three-dimensional heat transport equation in a thin film[J]. Numerical Methods for Partial Differential Equations, 2000, 16 (5): 441-458.
|
[10] |
高兴宝, 万桂华, 陈开周. 方程utt=uxxt +f(ux)x初边值问题的差分法[J]. 计算数学, 2000, 22 (2): 167-176.
GAO Xingbao, WAN Guihua, CHEN Kaizhou. The finite difference method for the initial-boundary-value problem of the equation utt=uxxt +f(ux)x[J]. Mathematica Numerical Sinica, 2000, 22 (2): 166-176. (in chinese)
|
[11] |
DENG D W, ZHANG C J. A new fourth-order numerical algorithm for a class of three-dimensional nonlinear evolution equations[J]. Numerical Methods for Partial Differential Equations, 2013, 29 (1): 102-130.
|
[12] |
DENG D W, ZHANG C J. Analysis and application of a compact multistep ADI solver for a class of nonlinear viscous wave equations[J]. Applied Mathematical Modelling, 2015, 39 (3/4): 1033-1049.
|
[13] |
张志跃. 一类非线性发展方程的交替分段显隐并行数值方法[J]. 计算力学学报, 2022, 19 (2): 154-158.
ZHANG Zhiyue. ASE-I parallel numerical method for a class of nonlinear evolution equation[J]. Chinese Journal of Computational Mechanics, 2022, 19 (2): 154-158. (in Chinese)
|
[14] |
ZHANG Z Y. The finite element numerical analysis for a class nonlinear evolution equations[J]. Applied Mathematics and Computation, 2005, 166 (3): 489-500.
|
[15] |
LI H R. Analysis and application of finite volume element methods to a class of partial differential equations[J]. Journal of Mathematical Analysis and Applications, 2009, 358 (1): 47-55.
|
[16] |
DENG D W, ZHANG Z Y. A new high-order algorithm for a class of nonlinear evolution equation[J]. Journal of Physics A: Mathematical and Theoretical, 2008, 41 (1): 015202.
|
[17] |
LELE S K. Compact finite difference schemes with spectral-like resolution[J]. Journal of Cmputational Pysics, 1992, 103 (1): 16-42.
|
[18] |
KARAA S, ZHANG J. High order ADI method for solving unsteady convection-diffusion problems[J]. Journal of Computational Physics, 2004, 198 (1): 1-9.
|
[19] |
DENG D W, LIANG D. The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations[J]. Applied Mathematics and Computation, 2018, 329: 188-209.
|
[20] |
WU F Y, CHENG X J, LI D F, et al. A two-level linearized compact ADI scheme for two-dimensional nonlinear reaction-diffusion equations[J]. Computers & Mathematics With Applications, 2018, 75 (8): 2835-2850.
|
[21] |
GU Y X, LIAO W Y, ZHU J P. An efficient high-order algorithm for solving systems of 3-D reaction-diffusion equations[J]. Journal of Computational and Applied Mathematics, 2003, 155 (1): 1-17.
|
[22] |
DENG D W, ZHANG C J. A family of new fourth-order solvers for a nonlinear damped wave equation[J]. Computer Physics Communications, 2013, 184 (1): 86-101.
|
[23] |
魏剑英, 葛永斌. 一种求解三维非稳态对流扩散反应方程的高精度有限差分格式[J]. 应用数学和力学, 2022, 43 (2): 187-197. doi: 10.21656/1000-0887.420151
WEI Jianying, GE Yongbin. A high-order finite difference scheme for 3D unsteady convection diffusion reaction equations[J]. Applied Mathematics and Mechanics, 2022, 43 (2): 187-197. (in Chinese) doi: 10.21656/1000-0887.420151
|
[24] |
胡健伟, 汤怀民. 微分方程数值方法[M]. 北京: 科学出版社, 2011.
HU Jianwei, TANG Huaiming. Numerical Methods for Differential Equations[M]. Beijing: Science Press, 2011. (in Chinese)
|
[25] |
孙志忠. 偏微分方程数值解法[M]. 2版. 北京: 科学出版社, 2012.
SUN Zhizhong. Numerical Solutions for Partial Differential Equations[M]. 2nd ed. Beijing: Science Press, 2012. (in Chinese)
|
[26] |
程爱杰. 交替方向隐格式稳定性和收敛性的改进[J]. 应用数学和力学, 1999, 20 (1): 71-78. doi: 10.21656/1000-0887.450301
CHENG Aijie. Improvement of stability and convergence of alternating direction implicit scheme[J]. Applied Mathematics and Mechanics, 1999, 20 (1): 71-78. (in Chinese) doi: 10.21656/1000-0887.450301
|