Citation: | FANG Jun, WU Yishi. Strong-Weak Non-Local Medium Constitutive Modeling Based on the Spatial Fractional Derivative[J]. Applied Mathematics and Mechanics, 2025, 46(6): 764-780. doi: 10.21656/1000-0887.450073 |
[1] |
陈荟键, 朱清锋, 苗鸿臣, 等. 受载结构中SH0波与裂纹作用的非线性散射场的数值研究[J]. 应用数学和力学, 2023, 44(4): 367-380. doi: 10.21656/1000-0887.440029
CHEN Huijian, ZHU Qingfeng, MIAO Hongchen, et al. Numerical study of nonlinear scattering characteristics of SH0 waves encountering cracks in prestressed plates[J]. Applied Mathematics and Mechanics, 2023, 44(4): 367-380. (in Chinese) doi: 10.21656/1000-0887.440029
|
[2] |
邓健, 肖鹏程, 王增贤, 等. 基于黏聚区模型的ENF试件层间裂纹扩展分析[J]. 应用数学和力学, 2022, 43(5): 515-523. doi: 10.21656/1000-0887.430082
DENG Jian, XIAO Pengcheng, WANG Zengxian, et al. Interlaminar crack propagation analysis of ENF specimens based on the cohesive zone model[J]. Applied Mathematics and Mechanics, 2022, 43(5): 515-523. (in Chinese) doi: 10.21656/1000-0887.430082
|
[3] |
MENG C, WEI H, CHEN H, et al. Modeling plasticity of cubic crystals using a nonlocal lattice particle method[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 385: 114069. doi: 10.1016/j.cma.2021.114069
|
[4] |
FU L, ZHOU X P, BERTO F. A three-dimensional non-local lattice bond model for fracturing behavior prediction in brittle solids[J]. International Journal of Fracture, 2022, 234(1/2): 297-311.
|
[5] |
SHEYKHI M, ESKANDARI A, GHAFARI D, et al. Investigation of fluid viscosity and density on vibration of nano beam submerged in fluid considering nonlocal elasticity theory[J]. Alexandria Engineering Journal, 2023, 65: 607-614. doi: 10.1016/j.aej.2022.10.016
|
[6] |
TARASOV V E. General non-local electrodynamics: equations and non-local effects[J]. Annals of Physics, 2022, 445: 169082. doi: 10.1016/j.aop.2022.169082
|
[7] |
ESEN I, DAIKH A A, ELTAHER M A. Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load [J]. The European Physical Journal Plus, 2021, 136(4): 1-22.
|
[8] |
田娅, 秦瑶, 向晶. 一类带有变指数非局部项的反应扩散方程解的爆破行为[J]. 应用数学和力学, 2022, 43(10): 1177-1184. doi: 10.21656/1000-0887.420180
TIAN Ya, QIN Yao, XIANG Jing. Blow-up behaviors of solutions to reaction-diffusion equations with nonlocal sources and variable exponents[J]. Applied Mathematics and Mechanics, 2022, 43(10): 1177-1184. (in Chinese) doi: 10.21656/1000-0887.420180
|
[9] |
KRUMHANSL J A. Generalized continuum field representations for lattice vibrations[J]. Solid State Communications, 1963, 1(6): 198.
|
[10] |
ERINGEN A C, WEGNER J L. Nonlocal continuum field theories[J]. Applied Mechanics Reviews, 2003, 56(2): B20-B22. doi: 10.1115/1.1553434
|
[11] |
AIFANTIS E C. On the role of gradients in the localization of deformation and fracture[J]. International Journal of Engineering Science, 1992, 30(10): 1279-1299. doi: 10.1016/0020-7225(92)90141-3
|
[12] |
LIM C W, ZHANG G, REDDY J N. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation[J]. Journal of the Mechanics and Physics of Solids, 2015, 78: 298-313. doi: 10.1016/j.jmps.2015.02.001
|
[13] |
LAZOPOULOS K A. Non-local continuum mechanics and fractional calculus[J]. Mechanics Research Communications, 2006, 33(6): 753-757. doi: 10.1016/j.mechrescom.2006.05.001
|
[14] |
CARPINTERI A, CORNETTI P, SAPORA A. Nonlocal elasticity: an approach based on fractional calculus[J]. Meccanica, 2014, 49(11): 2551-2569. doi: 10.1007/s11012-014-0044-5
|
[15] |
VAIYAPURI S. Fractional derivative analysis of wave propagation studies using eringen's nonlocal model with elastic medium support[J]. Journal of Vibration Engineering & Technologies, 2022, 11(8): 3677-3685.
|
[16] |
庞国飞, 陈文. 基于Riesz势空间分数阶算子的非局部粘弹性力学元件[J]. 固体力学学报, 2017, 38(1): 47-54.
(PANG Guofei, CHEN Wen. Nonlocal viscoelastic elements based on Riesz potential space-fractional operator[J]. Chinese Journal of Solid Mechanics, 2017, 38(1): 47-54. (in Chinese)
|
[17] |
TARASOV V E, AIFANTIS E C. Non-standard extensions of gradient elasticity: fractional non-locality, memory and fractality[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 22(1/2/3): 197-227.
|
[18] |
TARASOV V E. General non-local continuum mechanics: derivation of balance equations[J]. Mathematics, 2022, 10(9): 1427. doi: 10.3390/math10091427
|
[19] |
WU X, WEN Z, JIN Y, et al. Broadband Rayleigh wave attenuation by gradient metamaterials[J]. International Journal of Mechanical Sciences, 2021, 205: 106592. doi: 10.1016/j.ijmecsci.2021.106592
|
[20] |
HOLM S, NÄSHOLM S P. Comparison of fractional wave equations for power law attenuation in ultrasound and elastography[J]. Ultrasound in Medicine & Biology, 2014, 40(4): 695-703.
|
[21] |
HOLM S, NÄSHOLM S P. A causal and fractional all-frequency wave equation for lossy media[J]. The Journal of the Acoustical Society of America, 2011, 130(4): 2195-2202. doi: 10.1121/1.3631626
|
[22] |
SAMKO S G, KILBAS A A, MARICEV O I. Fractional integrals and derivations and some applications[J]. Minsk: Nauka I Tekhnika, 1993, 3: 397-414.
|
[23] |
CHEN W, HOLM S. Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency[J]. The Journal of the Acoustical Society of America, 2004, 115(4): 1424-1430. doi: 10.1121/1.1646399
|
[24] |
BUCKINGHAM M J. Wave-speed dispersion associated with an attenuation obeying a frequency power law[J]. The Journal of the Acoustical Society of America, 2015, 138(5): 2871-2884. doi: 10.1121/1.4932030
|
[25] |
AIFANTIS E C. On the gradient approach-relation to Eringen's nonlocal theory[J]. International Journal of Engineering Science, 2011, 49(12): 1367-1377. doi: 10.1016/j.ijengsci.2011.03.016
|
[26] |
ASRARI R, EBRAHIMI F, KHEIRIKHAH M M, SAFARI K H. Buckling analysis of heterogeneous magneto-electro-thermo-elastic cylindrical nanoshells based on nonlocal strain gradient elasticity theory[J]. Mechanics Based Design of Structures and Machines, 2022, 50(3): 817-840. doi: 10.1080/15397734.2020.1728545
|
[27] |
AIFANTIS E C. Fractional generalizations of gradient mechanics[M]//TARASOV V E. Handbook of Fractional Calculus With Applications, 2019: 241-262.
|
[28] |
CHEN W, FANG J, PANG G, et al. Fractional biharmonic operator equation model for arbitrary frequency-dependent scattering attenuation in acoustic wave propagation[J]. The Journal of the Acoustical Society of America, 2017, 141(1): 244-253.
|
[29] |
TREEBY B E, COX B T. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian[J]. The Journal of the Acoustical Society of America, 2010, 127(5): 2741-2748.
|
[30] |
HOLM S, NÄSHOLM S P, PRIEUR F, et al. Deriving fractional acoustic wave equations from mechanical and thermal constitutive equations[J]. Computers & Mathematics With Applications, 2013, 66(5): 621-629.
|
[31] |
KHOKHLOV N, FAVORSKAYA A, STETSYUK V, et al. Grid-characteristic method using Chimera meshes for simulation of elastic waves scattering on geological fractured zones[J]. Journal of Computational Physics, 2021, 446: 110637.
|
[32] |
OHARA Y, REMILLIEUX M C, ULRICH T J, et al. Exploring 3D elastic-wave scattering at interfaces using high-resolution phased-array system[J]. Scientific Reports, 2022, 12: 8291.
|
[33] |
方俊. 超声无损检测中声波散射衰减的分数阶导数建模研究[J]. 冶金与材料, 2019, 39(1): 7-11.
FANG Jun. Fractional derivative modeling of frequency dependent scattering attenuation in ultrasonic non-destructive testing[J]. Metallurgy and Materials, 2019, 39(1): 7-11. (in Chinese)
|
[34] |
孙海忠, 张卫. 一种分析软土黏弹性的分数导数开尔文模型[J]. 岩土力学, 2007, 28(9): 1983-1986.
SUN Haizhong, ZHANG Wei. Analysis of soft soil with viscoelastic fractional derivative Kelvin model[J]. Rock and Soil Mechanics, 2007, 28(9): 1983-1986. (in Chinese)
|