Citation: | XING Jingnan, LIU Yongbo. Electroosmotic Flow and Heat Transfer Characteristics of Nanofluids in Curved Rectangular Microchannels[J]. Applied Mathematics and Mechanics, 2025, 46(6): 717-729. doi: 10.21656/1000-0887.450199 |
[1] |
长龙, 布仁满都拉, 孙艳军, 等. 具有正弦波纹的平行板微通道中Jeffrey流体周期电渗流动[J]. 应用数学和力学, 2024, 45(5): 622-636. doi: 10.21656/1000-0887.440333
CHANG Long, BUREN Mandula, SUN Yanjun, et al. Periodic electroosmotic flow of the Jeffrey fluid in microchannel between two sinusoidally wavy walls[J]. Applied Mathematics and Mechanics, 2024, 45(5): 622-636. (in Chinese) doi: 10.21656/1000-0887.440333
|
[2] |
杜昌隆, 夏威豪, 杨嘉杰, 等. 缩放管中黏弹性流体电渗压力混合流模拟研究[J]. 应用数学和力学, 2023, 44(6): 643-653. doi: 10.21656/1000-0887.430255
DU Changlong, XIA Weihao, YANG Jiajie, et al. Simulation of electroosmotic and pressure-driven mixed flow of viscoelastic fluids in converging-diverging tubes[J]. Applied Mathematics and Mechanics, 2023, 44(6): 643-653. (in Chinese) doi: 10.21656/1000-0887.430255
|
[3] |
YUAN S, ZHOU M, LIU X, et al. Effect of pressure-driven flow on electroosmotic flow and electrokinetic mass transport in microchannels[J]. International Journal of Heat and Mass Transfer, 2023, 206: 123925.
|
[4] |
MALA G M, LI D, DALE J D. Heat transfer and fluid flow in microchannels[J]. International Journal of Heat and Mass Transfer, 1997, 40(13): 3079-3088.
|
[5] |
AZARI M, SADEGHI A, CHAKRABORTY S. Electroosmotic flow and heat transfer in a heterogeneous circular microchannel[J]. Applied Mathematical Modelling, 2020, 87: 640-654.
|
[6] |
AL-RJOUB M F, ROY A K, GANGULI S, et al. Enhanced heat transfer in a micro-scale heat exchanger using nano-particle laden electro-osmotic flow[J]. International Communications in Heat and Mass Transfer, 2015, 68: 228-235.
|
[7] |
VOCALE P, GERI M, CATTANI L, et al. Electro-osmotic heat transfer in elliptical microchannels under H1 boundary condition[J]. International Journal of Thermal Sciences, 2013, 72: 92-101.
|
[8] |
AL-RJOUB M F, ROY A K, GANGULI S, et al. Assessment of an active-cooling micro-channel heat sink device, using electro-osmotic flow[J]. International Journal of Heat and Mass Transfer, 2011, 54(21/22): 4560-4569.
|
[9] |
ENG P F, NITHIARASU P, GUY O J. An experimental study on an electro-osmotic flow-based silicon heat spreader[J]. Microfluidics and Nanofluidics, 2010, 9(4): 787-795.
|
[10] |
XUAN X, XU B, SINTON D, et al. Electroosmotic flow with Joule heating effects[J]. Lab on a Chip, 2004, 4(3): 230-236.
|
[11] |
WANG C, WONG T N, YANG C, et al. Characterization of electroosmotic flow in rectangular microchannels[J]. International Journal of Heat and Mass Transfer, 2007, 50(15/16): 3115-3121.
|
[12] |
QI C, NG C O. Electroosmotic flow of a two-layer fluid in a slit channel with gradually varying wall shape and zeta potential[J]. International Journal of Heat and Mass Transfer, 2018, 119: 52-64.
|
[13] |
TANG G H, LI X F, HE Y L, et al. Electroosmotic flow of non-Newtonian fluid in microchannels[J]. Journal of Non-Newtonian Fluid Mechanics, 2009, 157(1/2): 133-137.
|
[14] |
CHAUBE M K, YADAV A, TRIPATHI D, et al. Electroosmotic flow of biorheological micropolar fluids through microfluidic channels[J]. Korea-Australia Rheology Journal, 2018, 30(2): 89-98.
|
[15] |
CHANG C C, WANG C Y. Starting electroosmotic flow in an annulus and in a rectangular channel[J]. Electrophoresis, 2008, 29(14): 2970-2979.
|
[16] |
XUAN X C, LI D Q. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge[J]. Journal of Colloid and Interface Science, 2005, 289(1): 291-303.
|
[17] |
DUTTA P, BESKOK A, WARBURTON T C. Electroosmotic flow control in complex microgeometries[J]. Journal of Microelectromechanical Systems, 2002, 11(1): 36-44.
|
[18] |
GERI M, LORENZINI M, MORINI G L. Effects of the channel geometry and of the fluid composition on the performances of DC electro-osmotic pumps[J]. International Journal of Thermal Sciences, 2012, 55: 114-121.
|
[19] |
TANG G Y, YAN D G, YANG C, et al. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels[J]. Electrophoresis, 2006, 27(3): 628-639.
|
[20] |
ZHAO C L, YANG C. Joule heating induced heat transfer for electroosmotic flow of power-law fluids in a microcapillary[J]. International Journal of Heat and Mass Transfer, 2012, 55(7/8): 2044-2051.
|
[21] |
PAN J J, WANG X Y, CHIANG C L, et al. Joule heating and electroosmotic flow in cellular micro/nano electroporation[J]. Lab on a Chip, 2024, 24(4): 819-831.
|
[22] |
CHAKRABORTY S, ROY S. Thermally developing electroosmotic transport of nanofluids in microchannels[J]. Microfluidics and Nanofluidics, 2008, 4(6): 501-511.
|
[23] |
SARKAR S, GANGULY S. Fully developed thermal transport in combined pressure and electroosmotically driven flow of nanofluid in a microchannel under the effect of a magnetic field[J]. Microfluidics and Nanofluidics, 2015, 18 (4): 623-636.
|
[24] |
TRIPATHI D, SHARMA A, BÉG O A. Electrothermal transport of nanofluids via peristaltic pumping in a finite micro-channel: effects of Joule heating and Helmholtz-Smoluchowski velocity[J]. International Journal of Heat and Mass Transfer, 2017, 111: 138-149.
|
[25] |
AKRAM J, AKBAR N S, TRIPATHI D. Numerical simulation of electrokinetically driven peristaltic pumping of silver-water nanofluids in an asymmetric microchannel[J]. Chinese Journal of Physics, 2020, 68: 745-763.
|
[26] |
ZHAO G P, JIAN Y J. Thermal transport of combined electroosmotically and pressure driven nanofluid flow in soft nanochannels[J]. Journal of Thermal Analysis and Calorimetry, 2019, 135(1): 379-391.
|
[27] |
NARLA V K, TRIPATHI D, BÉG O A. Electro-osmotic nanofluid flow in a curved microchannel[J]. Chinese Journal of Physics, 2020, 67: 544-558.
|
[28] |
AKRAM J, AKBAR N S, ALANSARI M, et al. Electroosmotically modulated peristaltic propulsion of TiO2/10W40 nanofluid in curved microchannel[J]. International Communications in Heat and Mass Transfer, 2022, 136: 106208.
|
[29] |
BILAL M, ASGHAR I, RAMZAN M, et al. Dissipated electroosmotic EMHD hybrid nanofluid flow through the micro-channel[J]. Scientific Reports, 2022, 12(1): 4771.
|
[30] |
SARAVANI M S, KALTEH M. Heat transfer investigation of combined electroosmotic/pressure driven nanofluid flow in a microchannel: effect of heterogeneous surface potential and slip boundary condition[J]. European Journal of Mechanics B: Fluids, 2020, 80: 13-25.
|
[31] |
KOCKMANN N, ENGLER M, HALLER D, et al. Fluid dynamics and transfer processes in bended microchannels[J]. Heat Transfer Engineering, 2005, 26(3): 71-78.
|
[32] |
SCHÖNFELD F, HARDT S. Simulation of helical flows in microchannels[J]. AIChE Journal, 2004, 50(4): 771-778.
|
[33] |
JIANG F, DRESE K S, HARDT S, et al. Helical flows and chaotic mixing in curved micro channels[J]. AIChE Journal, 2004, 50(9): 2297-2305.
|
[34] |
OOKAWARA S, HIGASHI R, STREET D, et al. Feasibility study on concentration of slurry and classification of contained particles by microchannel[J]. Chemical Engineering Journal, 2004, 101(1/2/3): 171-178.
|
[35] |
ZOUROB M, MOHR S, MAYES A G, et al. A micro-reactor for preparing uniform molecularly imprinted polymer beads[J]. Lab on a Chip, 2006, 6(2): 296-301.
|
[36] |
LUO W J. Transient electroosmotic flow induced by DC or AC electric fields in a curved microtube[J]. Journal of Colloid and Interface Science, 2004, 278(2): 497-507.
|
[37] |
LUO W J, PAN Y J, YANG R J. Transient analysis of electro-osmotic secondary flow induced by DC or AC electric field in a curved rectangular microchannel[J]. Journal of Micromechanics and Microengineering, 2005, 15(3): 463-473.
|
[38] |
NEKOUBIN N. Electroosmotic flow of power-law fluids in curved rectangular microchannel with high zeta potentials[J]. Journal of Non-Newtonian Fluid Mechanics, 2018, 260: 54-68.
|
[39] |
LIU Y B, XING J N, JIAN Y J. Heat transfer and entropy generation analysis of electroosmotic flows in curved rectangular nanochannels considering the influence of steric effects[J]. International Communications in Heat and Mass Transfer, 2022, 139: 106501.
|
[40] |
LIU Y B. Effect of boundary slip on electroosmotic flow in a curved rectangular microchannel[J]. Chinese Physics B, 2024, 33(7): 074101.
|
[41] |
WANG M, CHEN S. On applicability of Poisson-Boltzmann equation for micro-and nanoscale electroosmotic flows[J]. Communications in Computational Physics, 2008, 3(5): 1087-1099.
|
[42] |
GANGULY S, SARKAR S, HOTA T K, et al. Thermally developing combined electroosmotic and pressure-driven flow of nanofluids in a microchannel under the effect of magnetic field[J]. Chemical Engineering Science, 2015, 126: 10-21.
|
[43] |
LIU Y, JIAN Y, YANG C. Electrochemomechanical energy conversion efficiency in curved rectangular nanochannels[J]. Energy, 2020, 198: 117401.
|
[44] |
NOROUZI M, ZARE VAMERZANI B, DAVOODI M, et al. An exact analytical solution for creeping Dean flow of Bingham plastics through curved rectangular ducts[J]. Rheologica Acta, 2015, 54(5): 391-402.
|
[45] |
TING T W, HUNG Y M, GUO N. Viscous dissipative forced convection in thermal non-equilibrium nanofluid-saturated porous media embedded in microchannels[J]. International Communications in Heat and Mass Transfer, 2014, 57: 309-318.
|
[46] |
SU J, JIAN Y, CHANG L. Thermally fully developed electroosmotic flow through a rectangular microchannel[J]. International Journal of Heat and Mass Transfer, 2012, 55(21/22): 6285-6290.
|