Volume 46 Issue 6
Jun.  2025
Turn off MathJax
Article Contents
CHEN Shenshen, HU Ying, ZHANG Wei, WANG Fangxin. A Cell-Based Smoothed Radial Point Interpolation Method for Upper Bound Limit Analysis[J]. Applied Mathematics and Mechanics, 2025, 46(6): 791-799. doi: 10.21656/1000-0887.450222
Citation: CHEN Shenshen, HU Ying, ZHANG Wei, WANG Fangxin. A Cell-Based Smoothed Radial Point Interpolation Method for Upper Bound Limit Analysis[J]. Applied Mathematics and Mechanics, 2025, 46(6): 791-799. doi: 10.21656/1000-0887.450222

A Cell-Based Smoothed Radial Point Interpolation Method for Upper Bound Limit Analysis

doi: 10.21656/1000-0887.450222
  • Received Date: 2024-07-31
  • Rev Recd Date: 2024-09-04
  • Publish Date: 2025-06-01
  • Based on the upper bound theorem of limit analysis, a solution procedure for limit analysis of structures made of rigid-perfectly plastic material was proposed with the cell-based smoothed radial point interpolation method (CS-RPIM). To impose the essential boundary conditions directly, the RPIM was utilized to construct a kinematically admissible velocity field. The plastic incompressibility conditions of plane stress and plane strain problems were treated respectively with 2 different methods. The upper bound problem was formulated mathematically through minimization of the dissipation power subject to a set of equality constraints and this minimization problem can be transformed into a standard 2nd-order cone programming one, which can be easily solved with the primal-dual interior point method. Numerical examples demonstrate that, the proposed method can provide reasonable and satisfactory upper bound limit load multipliers for rigid-perfectly plastic structures. In addition, the computational results are very insensitive to the mesh distortion.
  • loading
  • [1]
    LIU F T, ZHAO J D. Upper bound limit analysis using radial point interpolation meshless method and nonlinear programming[J]. International Journal of Mechanical Sciences, 2013, 70: 26-38. doi: 10.1016/j.ijmecsci.2013.01.017
    [2]
    ZHOU S T, LIU Y H. Upper bound limit analysis based on the natural element method[J]. Acta Mechanica Sinica, 2012, 28 (5): 1398-1415. doi: 10.1007/s10409-012-0149-9
    [3]
    YUAN S, DU J N. Upper bound limit analysis using the weak form quadrature element method[J]. Applied Mathematical Modelling, 2018, 56: 551-563. doi: 10.1016/j.apm.2017.12.015
    [4]
    YUAN S, DU J N. Effective stress-based upper bound limit analysis of unsaturated soils using the weak form quadrature element method[J]. Computers and Geotechnics, 2018, 98: 172-180. doi: 10.1016/j.compgeo.2018.02.008
    [5]
    ZHANG X F, LIU Y H, ZHAO Y N, et al. Lower bound limit analysis by the symmetric Galerkin boundary element method and the complex method[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191 (17/18): 1967-1982.
    [6]
    PANZECA T, PARLAVECCHIO E, ZITO L, et al. Lower bound limit analysis by BEM: convex optimization problem and incremental approach[J]. Engineering Analysis With Boundary Elements, 2013, 37 (3): 558-568. doi: 10.1016/j.enganabound.2012.11.016
    [7]
    WANG L H, HU M H, ZHONG Z, et al. Stabilized Lagrange interpolation collocation method: a meshfree method incorporating the advantages of finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 404: 115780. doi: 10.1016/j.cma.2022.115780
    [8]
    陈卫, 汤智宏, 彭林欣. 基于分层法的功能梯度三明治壳线性弯曲无网格分析[J]. 应用数学和力学, 2024, 45 (5): 539-553. doi: 10.21656/1000-0887.440262

    CHEN Wei, TANG Zhihong, PENG Linxin. Linear bending analysis of functionally graded sandwich shells with the meshless method based on the layer-wise theory[J]. Applied Mathematics and Mechanics, 2024, 45 (5): 539-553. (in Chinese) doi: 10.21656/1000-0887.440262
    [9]
    陈虹伶, 李小林. 分数阶Cable方程的有限点法分析[J]. 应用数学和力学, 2022, 43 (6): 700-706. doi: 10.21656/1000-0887.420183

    CHEN Hongling, LI Xiaolin. Analysis of the finite point method for fractional cable equations[J]. Applied Mathematics and Mechanics, 2022, 43 (6): 700-706. (in Chinese) doi: 10.21656/1000-0887.420183
    [10]
    WU J, WANG D. An accuracy analysis of Galerkin meshfree methods accounting for numerical integration[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 375: 113631. doi: 10.1016/j.cma.2020.113631
    [11]
    陈莘莘, 王崴. 基于自然单元法的轴对称结构极限上限分析[J]. 计算力学学报, 2020, 37 (2): 159-164.

    CHEN Shenshen, WANG Wei. Upper bound limit analysis of axisymmetric structures based on natural element method[J]. Chinese Journal of Computational Mechanics, 2020, 37 (2): 159-164. (in Chinese)
    [12]
    CHEN S S, LIU Y H, CEN Z Z. Lower bound limit analysis by using the EFG method and nonlinear programming[J]. International Journal for Numerical Methods in Engineering, 2008, 74: 391-415. doi: 10.1002/nme.2177
    [13]
    LE C V, GILBERT M, ASKES H. Limit analysis of plates using the EFG method and second-order cone programming[J]. International Journal for Numerical Methods in Engineering, 2009, 78 (13): 1532-1552. doi: 10.1002/nme.2535
    [14]
    CHEN S S, XU M Y, ZHU X Y. A cell-based smoothed radial point interpolation method applied to kinematic limit analysis of thin plates[J]. Engineering Analysis With Boundary Elements, 2022, 143: 710-718. doi: 10.1016/j.enganabound.2022.07.021
    [15]
    LE C V, HO P L H, NGUYEN P H, et al. Yield design of reinforced concrete slabs using a rotation-free meshfree method[J]. Engineering Analysis With Boundary Elements, 2015, 50: 231-238. doi: 10.1016/j.enganabound.2014.09.001
    [16]
    CUI X Y, LIU G R, LI G Y. A cell-based smoothed radial point interpolation method (CS-RPIM) for static and free vibration of solids[J]. Engineering Analysis With Boundary Elements, 2010, 34 (2): 144-157. doi: 10.1016/j.enganabound.2009.07.011
    [17]
    CUI X Y, LIU G R, LI G Y, et al. A thin plate formulation without rotation DOFs based on the radial point interpolation method and triangular cells[J]. International Journal for Numerical Methods in Engineering, 2011, 85 (8): 958-986. doi: 10.1002/nme.3000
    [18]
    LIU G R. A generalized gradient smoothing technique and smoothed bilinear form for Galerkin formulation of a wide class of computational methods[J]. International Journal of Computational Methods, 2008, 5 (2): 199-236. doi: 10.1142/S0219876208001510
    [19]
    WANG J G, LIU G R. A point interpolation meshless method based on radial basis functions[J]. International Journal for Numerical Methods in Engineering, 2002, 54 (11): 1623-1648. doi: 10.1002/nme.489
    [20]
    姚凌云, 于德介, 臧献国. 声学数值计算的分区光滑径向点插值无网格法[J]. 振动与冲击, 2011, 30 (10): 188-192. doi: 10.3969/j.issn.1000-3835.2011.10.036

    YAO Lingyun, YU Dejie, ZANG Xianguo. Numerical computation for acoustic problems with a cell-based smoothed radial point interpolation method[J]. Journal of Vibration and Shock, 2011, 30 (10): 188-192. (in Chinese) doi: 10.3969/j.issn.1000-3835.2011.10.036
    [21]
    TAO D S, ZHANG G Y, CHEN Z C, et al. A cell-based smoothed radial point interpolation method using condensed shape functions for free and forced vibration analysis of solids[J]. Engineering Analysis With Boundary Elements, 2019, 102: 29-38. doi: 10.1016/j.enganabound.2019.02.003
    [22]
    WU G, ZHANG J, LI Y L, et al. Analysis of transient thermo-elastic problems using a cell-based smoothed radial point interpolation method[J]. International Journal of Computational Methods, 2016, 13 (5): 1650023. doi: 10.1142/S0219876216500237
    [23]
    FENG S Z, LI A M. Analysis of thermal and mechanical response in functionally graded cylinder using cell-based smoothed radial point interpolation method[J]. Aerospace Science and Technology, 2017, 65: 46-53. doi: 10.1016/j.ast.2017.02.009
    [24]
    TOOTOONCHI A, KHOSHGHALB A, LIU G R, et al. A cell-based smoothed point interpolation method for flow-deformation analysis of saturated porous media[J]. Computers and Geotechnics, 2016, 75: 159-173. doi: 10.1016/j.compgeo.2016.01.027
    [25]
    MITTELMANN H D. An independent benchmarking of SDP and SOCP solvers[J]. Mathematical Programming, 2003, 95 (2): 407-430. doi: 10.1007/s10107-002-0355-5
    [26]
    LE C V, NGUYEN-XUAN H, ASKES H, et al. A cell-based smoothed finite element method for kinematic limit analysis[J]. International Journal for Numerical Methods in Engineering, 2010, 83 (12): 1651-1674. doi: 10.1002/nme.2897
    [27]
    CIRIA H, PERAIRE J, BONET J. Mesh adaptive computation of upper and lower bounds in limit analysis[J]. International Journal for Numerical Methods in Engineering, 2008, 75 (8): 899-944. doi: 10.1002/nme.2275
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (42) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return