ZHOU Huan-lin, XU Xing-sheng, LI Xiu-li, CHEN Hao-long. Identification of Temperature-Dependent Thermal Conductivity for 2-D Transient Heat Conduction Problems[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1341-1351. doi: 10.3879/j.issn.1000-0887.2014.12.006
Citation: ZHOU Huan-lin, XU Xing-sheng, LI Xiu-li, CHEN Hao-long. Identification of Temperature-Dependent Thermal Conductivity for 2-D Transient Heat Conduction Problems[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1341-1351. doi: 10.3879/j.issn.1000-0887.2014.12.006

Identification of Temperature-Dependent Thermal Conductivity for 2-D Transient Heat Conduction Problems

doi: 10.3879/j.issn.1000-0887.2014.12.006
Funds:  The National Natural Science Foundation of China(11072073)
  • Received Date: 2014-07-23
  • Rev Recd Date: 2014-10-25
  • Publish Date: 2014-12-15
  • The temperature-dependent thermal conductivity was identified for 2-D transient heat conduction problems with the boundary element method (BEM). The nonlinear governing equations were transformed into linear ones through the Kirchhoff transformation. The BEM was used to build the numerical model for the 2-D transient heat conduction problems. The inversion parameters were defined as the optimization variables. The quadratic sum of residual errors between the calculated temperature values and the measured temperature values at the measuring points was regarded as the objective function. The complex variable differentiation method was employed to compute the gradient matrix of the objective function. The gradient-regulation method was developed to optimize the objective function. Effects of the time step length, the number of measuring points and the random noise on the inverse results were discussed. With decrease of the time step length and increase of the number of the measuring points, the converging rate quickens. With decrease of the random noise, the results grow accurate. Numerical tests show the effectiveness and stability of the presented method.
  • loading
  • [1]
    Huang C H, Yan J Y. An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity[J]. International Journal of Heat and Mass Transfer,1995,38(18): 3433-3441.
    [2]
    Huang C H, Chin S C. A two-dimensional inverse problem in imaging the thermal conductivity of a non-homogeneous medium[J]. International Journal of Heat and Mass Transfer,2000,43(22): 4061-4071.
    [3]
    Cui M, Gao X W, Zhang J B. A new approach for the estimation of temperature-dependent thermal properties by solving transient inverse heat conduction problems[J]. International Journal of Thermal Sciences,2012,58: 113-119.
    [4]
    贺国强, 孟泽红. 求解热传导反问题的一种正则化Newton型迭代法[J]. 应用数学和力学, 2007,28(4): 479-486.(HE Guo-qiang, MENG Ze-hong. A Newton type iterative method for heat-conduction inverse problems[J]. Applied Mathematics and Mechanics,2007,28(4): 479-486.(in Chinese))
    [5]
    Lesnic D, Elliott L, Ingham D B. Identification of the thermal conductivity and heat capacity in unsteady nonlinear heat conduction problems using the boundary element method[J]. Journal of Computational Physics,1996,126(2): 410-420.
    [6]
    薛齐文, 魏伟, 杨海天. 多宗量瞬态热传导反演识别[J]. 固体力学学报, 2009,30(1): 65-69.(XUE Qi-wen, WEI Wei, YANG Hai-tian. Parameters identification of inverse heat conduction problems in transient state with multi-variables[J]. Chinese Journal of Solid Mechanics,2009,30(1): 65-69.(in Chinese))
    [7]
    唐中华, 钱国红, 钱炜祺. 材料热传导系数随温度变化函数的反演方法[J]. 计算力学学报, 2011,28(3): 377-382.(TANG Zhong-hua, QIAN Guo-hong, QIAN Wei-qi. Estimation of temperature-dependent function of thermal conductivity for a material[J]. Chinese Journal of Computational Mechanics,2011,28(3): 377-382.(in Chinese))
    [8]
    Zhang W H, Xie G N, Zhang D. Application of an optimization method and experiment in inverse determination of interfacial heat transfer coefficients in the blade casting process[J]. Experimental Thermal and Fluid Science,2010,34(8): 1068-1076.
    [9]
    Chang C L, Chang M. Inverse determination of thermal conductivity using semi-discretization method[J]. Applied Mathematical Modelling,2009,33(3): 1644-1655.
    [10]
    王登刚, 刘迎曦, 李守巨. 非线性二维热传导反问题的混沌正则化混合解法[J]. 应用数学和力学,2002,23(8): 864-870.(WANG Deng-gang, LIU Ying-xi, LI Shou-ju. Chaos-regularization hybrid algorithm for nonlinear two-dimensional inverse heat conduction problem[J]. Applied Mathematics and Mechanics,2002,23(8): 864-870.(in Chinese))
    [11]
    程荣军, 程玉民. 带源参数的热传导反问题的无网格方法[J]. 物理学报, 2007,56(10): 5569-5574.(CHENG Rong-jun, CHENG Yu-min. The meshless method for solving the inverse heat conduction problem with a source parameter[J]. Acta Physica Sinica,2007,56(10): 5569-5574. (in Chinese))
    [12]
    钱炜祺, 何开锋, 汪清. 三维非稳态热传导逆问题反演算法研究[J]. 力学学报, 2008,40(5): 611-618.(QIAN Wei-qi, HE Kai-feng, WANG Qing. Inverse estimation of heat source term in three-dimensional transient heat conduction problem[J]. Chinese Journal of Theoretical and Applied Mechanics,2008,40(5): 611-618.(in Chinese))
    [13]
    张涛, 卢玫, 李博汉, 陶亮. 用于寻源导热反问题的自适应蚁群算法研究[J]. 应用数学和力学, 2014,35(7): 823-830.(ZHANG Tao, LU Mei, LI Bo-han, TAO Liang. Study of self-adaptive ant colony optimization for heat source search in inverse heat conduction problems[J]. Applied Mathematics and Mechanics,2012,35(7): 823-830.(in Chinese))
    [14]
    Lyness N, Moler C B. Numerical differentiation of analytic functions[J]. SIAM Journal on Numerical Analysis,1967,4(2): 202-210.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1134) PDF downloads(1235) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return