XU Chao-yang, MENG Ying-feng, WEI Na, LI Gao, WAN Li-ping. Research on the AUSMV Scheme for 1D Gas-Liquid Two-Phase Flow Drift Flux Models[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1373-1382. doi: 10.3879/j.issn.1000-0887.2014.12.009
Citation: XU Chao-yang, MENG Ying-feng, WEI Na, LI Gao, WAN Li-ping. Research on the AUSMV Scheme for 1D Gas-Liquid Two-Phase Flow Drift Flux Models[J]. Applied Mathematics and Mechanics, 2014, 35(12): 1373-1382. doi: 10.3879/j.issn.1000-0887.2014.12.009

Research on the AUSMV Scheme for 1D Gas-Liquid Two-Phase Flow Drift Flux Models

doi: 10.3879/j.issn.1000-0887.2014.12.009
Funds:  The National Science and Technology Major Project of China (2011ZX05021-003); The National Natural Science Foundation of China (51104124)
  • Received Date: 2014-06-23
  • Rev Recd Date: 2014-09-22
  • Publish Date: 2014-12-15
  • Application of the AUSMV (advection upstream splitting method V) scheme was extended from gas dynamics to transient 1D isothermal gas-liquid two-phase pipe flow problems. The method of numerical flux for the DFM (drift flux model) constructed with the AUSMV scheme and treatment of boundary cells were stated for the simulations. The numerical calculation method of 2nd-order accuracy in time and space was obtained with the classical Runge-Kutta method and the monotonous MUSCL (monotone upstream-centred schemes for conservation laws) technique combined with the Van Leer limiter. The numerical examples including the Zuber-Findlay shock tube problem and the variable mass flow problems with complex slip relations were conducted and comparatively discussed. The results indicate that the proposed AUSMV scheme, with advantages of high efficiency, high precision and low effects of dissipation and dispersion, accurately details the discontinuities of 1D gas-liquid two-phase flow problems under low flow velocity conditions.
  • loading
  • [1]
    Delhaye J M. Equations fondamentales des ecoulements diphasiques, part 1 and 2[R]. Report CEA-R-3429, France, 1968.
    [2]
    Zuber N, Findlay J A. Average volumetric concentration in two-phase flow systems[J]. Journal of Heat Transfer,1965,87(4): 453-468.
    [3]
    Large A C V M, Fjelde K K, Time R W .Underbalanced drilling dynamics: two-phase flow modeling and experiments[J]. SPE Journal,2003,8(1): 61-70.
    [4]
    Abbaspour M, Chapman K S, Glasgow L A. Transient modeling of non-isothermal, dispersed two-phase flow in natural gas pipelines[J]. Applied Mathematical Modelling,2010,34(2): 495-507.
    [5]
    Benzoni-Gavage S. Analyse numérique des modèles hydrodynamiques d’écoulements diphasique instationnaires dans les réseaux de production pétroliere[D]. PhD Thesis. France: ENS Lyon, 1991.
    [6]
    Théron B. coulements diphasique instationnaires en conduite horizontale[D]. PhD Thesis. France: INP Toulouse, 1989.
    [7]
    Barnea D. A unified model for predicting flow pattern transitions for the whole range of pipe inclinations[J]. International Journal of Multiphase Flow,1987,13(1): 1-12.
    [8]
    Liou Meng-Sing, Steffen C J. A new flux splitting scheme[J]. Journal of Computational Physics,1993,107(1): 23-39.
    [9]
    Liou Meng-Sing. A sequel to AUSM: AUSM+[J]. Journal of Computational Physics,1996,129(2): 364-382.
    [10]
    Wada Y, Liou Meng-Sing. An accurate and robust flux splitting scheme for shock and contact discontinuities[J]. SIAM Journal on Computing,1997,18(3): 633-657.
    [11]
    Liou Meng-Sing. A sequel to AUSM—part II: AUSM+-up for all speeds[J]. Journal of Computational Physics,2006,214(1): 137-170.
    [12]
    阎超, 于剑, 徐晶磊, 范晶晶, 高瑞泽, 姜振华. CFD模拟方法的发展成就与展望[J]. 力学进展, 2011,41(5): 562-588.(YAN Chao, YU Jian, XU Jing-lei, FANG Jing-jing, GAO Rui-ze, JIANG Zhen-hua. On the achievements and prospects for the methods of computational fluid dynamics[J]. Advances in Mechanics,2011,41(5): 562-588.(in Chinese))
    [13]
    Edwards J R, Franklin R K, Liou Meng-Sing. Low-diffusion flux-splitting methods for real fluid flows with phase transitions[J]. AIAA Journal,2000,38(9): 1624-1633.
    [14]
    NIU Yang-yao. Simple conservative flux splitting for multi-component flow calculations[J]. Numerical Heat Transfer, Part B,2000,38(2): 203-222.
    [15]
    NIU Yang-yao. Advection upwinding splitting method to solve a compressible two-fluid model[J]. International Journal of Numerical Methods in Fluids,2001,36(3): 351-371.
    [16]
    Paillère H, Corre C, García Cascales J R. On the extension of the AUSM+ scheme to compressible two-fluid models[J]. Computers and Fluids,2003,32(16): 891-916.
    [17]
    Evje S, Fjelde K K. Hybrid flux-splitting schemes for a two-phase flow model[J]. Journal of Computational Physics,2002,175(2): 674-701.
    [18]
    Evje S, Fjelde K K. On a rough AUSM scheme for a one-dimensional two-phase model[J]. Computer and Fluids,2003,32(10):1497-1530.
    [19]
    Van Leer B. Towards the ultimate conservative difference scheme—V: a second-order sequel to Godunov’s method[J]. Journal of Computational Physics,1979,32(1): 101-136.
    [20]
    张德良. 计算流体力学教程[M]. 北京: 高等教育出版社, 2010: 180-194.(ZHANG De-liang. A Course in Computational Fluid Dynamics [M]. Beijing: Higher Education Press, 2010: 180-194.(in Chinese))
    [21]
    Evje S, Fltten T. Hybrid flux-splitting schemes for a common two-fluid flow model[J].Journal of Computational Physics,2003,192(1): 175-210.
    [22]
    Flatten T, Munkejord S T. The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model[J]. ESAIM: Mathematical Modelling and Numerical Analysis,2006,40(4): 735-764.
    [23]
    Munkejord S T, Evje S, Flatten T. The multi-stage centred-scheme approach applied to a drift-flux two-phase flow model[J]. International Journal for Numerical Methods in Fluids,2006,52(6): 679-705.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1556) PDF downloads(880) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return