XU Jin-sheng, YANG Xiao-hong, ZHAO Lei, WANG Hong-li, HAN Long. Finite Element Application of the Time-Temperature Superposition Principle (TTSP) to Polymer[J]. Applied Mathematics and Mechanics, 2015, 36(5): 539-547. doi: 10.3879/j.issn.1000-0887.2015.05.009
Citation: XU Jin-sheng, YANG Xiao-hong, ZHAO Lei, WANG Hong-li, HAN Long. Finite Element Application of the Time-Temperature Superposition Principle (TTSP) to Polymer[J]. Applied Mathematics and Mechanics, 2015, 36(5): 539-547. doi: 10.3879/j.issn.1000-0887.2015.05.009

Finite Element Application of the Time-Temperature Superposition Principle (TTSP) to Polymer

doi: 10.3879/j.issn.1000-0887.2015.05.009
  • Received Date: 2014-11-11
  • Rev Recd Date: 2014-12-17
  • Publish Date: 2015-05-15
  • To better describe the temperature-dependent mechanical properties of polymer materials, an improved WLF model was proposed, with a ‘zero time’ factor introduced to promote the precision of the relaxation modulus acquisition at different temperature levels for linearly viscoelastic materials. Thereafter, the improved WLF model was applied in the finite element calculation via user material subroutine UTRS in ABAQUS. The model parameters were obtained out of a series of relaxation tests at different temperature levels, and the feasibility and validity of the improved WLF model and the numerical method were verified through the constant-rate tensile tests of composite propellant specimens. The results show that, compared with the traditional findings, the relaxation moduli acquired in view of the ‘zero time’ factor at different temperature levels are more accurate, and the improved WLF model is more applicable and precise for the temperature-dependent description of composite propellants.
  • loading
  • [1]
    刘长春, 吕和祥, 关萍. 混凝土材料的粘塑性损伤本构模型[J]. 应用数学和力学, 2007,28(9): 1021-1027.(LIU Chang-chun, Lü He-xiang, GUAN Ping. Coupled viscoplasticity damage constitutive model for concrete materials[J]. Applied Mathematics and Mechanics,2007,28(9): 1021-1027.(in Chinese))
    [2]
    李丹, 胡更开. 高体积百分比颗粒增强聚合物材料的有效粘弹性性质[J]. 应用数学和力学, 2007,28(3): 270-280.(LI Dan, HU Geng-kai. Effective viscoelastic behavior of particulate polymer composites at finite concentration[J].Applied Mathematics and Mechanics,2007,28(3): 270-280.(in Chinese))
    [3]
    许进升, 鞠玉涛, 郑健, 韩波. 复合固体推进剂松弛模量的获取方法[J]. 火炸药学报, 2011,34(5): 58-62.(XU Jin-sheng, JU Yu-tao, ZHENG Jian, HAN Bo. Acquisition of the relaxation modulus of composite solid propellant[J].Chinese Journal of Explosives & Propellants,2011,34(5): 58-62.(in Chinese))
    [4]
    XU Jin-sheng, CHEN Xiong, WANG Hong-li, ZHENG Jian, ZHOU Chang-sheng. Thermo-damage-viscoelastic constitutive model of HTPB composite propellant[J].International Journal of Solids and Structures,2014,51(18): 3209-3217.
    [5]
    Park S W, Schapery R A. A viscoelastic constitutive model for particulate composites with growing damage[J].International Journal of Solids and Structures,1997,34(8): 931-947.
    [6]
    蔡艳红, 陈浩然, 唐立强, 闫澄, 江莞. 剪切载荷作用下含损伤胶接材料界面动应力强度因子的研究[J]. 应用数学和力学, 2008,29(11): 1376-1386.(CAI Yan-hong, CHEN Hao-ran, TANG Li-qiang, YAN Cheng, JIANG Wan. Dynamic stress intensity factor analysis of adhesively bonded material interface with damage under shear loading[J].Applied Mathematics and Mechanics,2008,29(11): 1376-1386.(in Chinese))
    [7]
    CHYUAN Shiang-woei. Nonlinear thermoviscoelastic analysis of solid propellant grains subjected to temperature loading[J].Finite Elements in Analysis and Design,2002,38(7): 613-630.
    [8]
    郑健龙, 钱国平, 应荣华. 沥青混合料热粘弹性本构关系试验测定及其力学应用[J]. 工程力学, 2008,25(1): 34-41.(ZHENG Jian-long, QIAN Guo-ping, YING Rong-hua. Testing thermalviscoelastic constitutive relation of asphalt mixtures and its mechanical applications[J].Engineering Mechanics,2008,25(1): 34-41.(in Chinese))
    [9]
    钱国平, 郑健龙, 周志刚, 田小革. 沥青混合料增量型热粘弹性本构关系研究[J]. 应用力学学报, 2006,23(3): 338-343.(QIAN Guo-ping, ZHENG Jian-long, ZHOU Zhi-gang, TIAN Xiao-ge. Incremental thermalviscoelastic constitutive relation of asphalt mixtures[J].Chinese Journal of Applied Mechanicals,2006,23(3): 338-343.(in Chinese))
    [10]
    Nevière R. An extension of the time-temperature superposition principle to non-linear viscoelastic solids[J].International Journal of Solids and Structures,2006,43(17): 5295-5306.
    [11]
    Dagdug L, García-Colín L S. Generalization of the Williams-Landel-Ferry equation[J].Physica A : Statistical Mechanics and Its Applications,1998,250(1/2): 133-141.
    [12]
    Salmén L. Viscoelastic properties of in situ lignin under water-saturated conditions[J].Journal of Materials Science,1984,19(9): 3090-3096.
    [13]
    Peydró M A, Parres F, Crespo J E, Juárez D. Study of rheological behavior during the recovery process of high impact polystyrene using cross-WLF model[J].Journal of Applied Polymer Science,2011,120(4): 2400-2410.
    [14]
    CHANG Feng-cheng, Lam F, Kadla J F. Application of time-temperature-stress superposition on creep of wood-plastic composites[J].Mechanics of Time-Dependent Materials,2013,17(3): 427-437.
    [15]
    XU Jin-sheng, JU Yu-tao, HAN Bo, ZHOU Chang-sheng, ZHENG Jian. Research on relaxation modulus of viscoelastic materials under unsteady temperature states based on TTSP[J].Mechanics of Time-Dependent Materials,2013,17(4): 543-556.
    [16]
    Williams M L, Landel R F, Ferry J D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids[J].Journal of the American Chemical Society,1955,77(14): 3701-3707.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1552) PDF downloads(1655) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return