ZHAO Peng, DENG Zi-chen, ZHANG Yu. THz Wave Propagation in Carbon Nanotube Arrays Under the Symplectic System[J]. Applied Mathematics and Mechanics, 2015, 36(9): 905-913. doi: 10.3879/j.issn.1000-0887.2015.09.002
Citation: ZHAO Peng, DENG Zi-chen, ZHANG Yu. THz Wave Propagation in Carbon Nanotube Arrays Under the Symplectic System[J]. Applied Mathematics and Mechanics, 2015, 36(9): 905-913. doi: 10.3879/j.issn.1000-0887.2015.09.002

THz Wave Propagation in Carbon Nanotube Arrays Under the Symplectic System

doi: 10.3879/j.issn.1000-0887.2015.09.002
Funds:  The National Natural Science Foundation of China(11372252)
  • Received Date: 2015-05-27
  • Rev Recd Date: 2015-07-11
  • Publish Date: 2015-09-15
  • For a planar waveguide filled with periodic parallel finite-length carbon nanotube array, we got the dielectric properties of the parallel carbon nanotube array based on the equivalent medium model for parallel carbon nanotube arrays while ignoring the spatial dispersion but considering the electromagnetic wave propagation loss, respectively, and led the electromagnetic wave propagation in the waveguide into the Hamilton system with the ideal conductive boundary conditions, then we used the symplectic theory framework to solve the eigenvalue equations for the electromagnetic wave propagation and obtain the dispersion relationships. According to the analysis, it shows that the fundamental mode for the electromagnetic waveguide can't propagate within a narrow spectrum, however, the fundamental mode propagates smoothly with very low loss elsewhere, which makes the carbon nanotube array a waveguide material with better propagation characteristics in a wide spectrum than traditional materials.
  • loading
  • [1]
    de Volder M F L, Tawfick S H, Baughman R H, Hart A J. Carbon nanotubes: present and future commercial applications[J]. Science,2013,339(6119): 535-539.
    [2]
    Hanson G W. Fundamental transmitting properties of carbon nanotube antennas[J]. Antennas and Propagation, IEEE Transactions on,2005,53(11): 3426-3435.
    [3]
    Fu K, Zannoni R, Chan C, Adams S H, Nicholson J, Polizzi E, Yngvesson K S. Terahertz detection in single wall carbon nanotubes[J]. Applied Physics Letters,2008,92(3): 033105.
    [4]
    Kawano Y, Uchida T, Ishibashi K. Terahertz sensing with a carbon nanotube/two-dimensional electron gas hybrid transistor[J]. Applied Physics Letters,2009,95(8): 083123.
    [5]
    Wang Y, Kempa K, Kimball B, Carlson J B, Benham G, Li W Z, Kempa T, Rybczynski J, Herczynski A, Ren Z F. Receiving and transmitting light-like radio waves: antenna effect in arrays of aligned carbon nanotubes[J]. Applied Physics Letters,2004,85(13): 2607-2609.
    [6]
    Maksimenko S A, Slepyan G Y, Nemilentsau A M, Shuba M V. Carbon nanotube antenna: far-field, near-field and thermal-noise properties[J]. Physica E: Low-dimensional Systems and Nanostructures,2008,40(7): 2360-2364.
    [7]
    REN Lei, Pint C L, Booshehri L G, Rice W D, WANG Xiang-feng, Hilton D J, Takeya K, Kawayama I, Tonouchi M, Hauge R H, Kono J. Carbon nanotube terahertz polarizer[J]. Nano Letters,2009,9(7): 2610-2613.
    [8]
    Batrakov K G, Maksimenko S A, Kuzhir P P, Thomsen C. Carbon nanotube as a Cherenkov-type light emitter and free electron laser[J]. Physical Review B,2009,79(12): 125408.
    [9]
    Slepyan G Y, Maksimenko S A, Lakhtakia A, Yevtushenko O, Gusakov A V. Electrodynamics of carbon nanotubes: dynamic conductivity, impedance boundary conditions, and surface wave propagation[J]. Physical Review B,1999,60(24): 17136.
    [10]
    Maffucci A, Miano G, Villone F. A transmission line model for metallic carbon nanotube interconnects[J]. International Journal of Circuit Theory and Applications,2008,36(1): 31-51.
    [11]
    Shuba M V, Maksimenko S A, Lakhtakia A. Electromagnetic wave propagation in an almost circular bundle of closely packed, metallic, carbon nanotubes[J]. Physical Review B,2007,76(15): 155407.
    [12]
    Nefedov I S. Electromagnetic waves propagating in a periodic array of parallel metallic carbon nanotubes[J]. Physical Review B,2010,82(15): 155423.
    [13]
    García-Vidal F J, Pitarke J M, Pendry J B. Effective medium theory of the optical properties of aligned carbon nanotubes[J]. Physical Review Letters,1997,78(22): 4289-4292.
    [14]
    Nefedov I S, Tretyakov S A. An ultra-broadband electromagnetically indefinite medium formed by aligned carbon nanotubes[J]. Physical Review B,2011,84(11): 113410.
    [15]
    Hashemi S M, Nefedov I S. Wideband perfect absorption in arrays of tilted carbon nanotubes[J]. Physical Review B,2012,86(19): 195411.
    [16]
    Nefedov I S, Tretyakov S A. Effective medium model for two-dimensional periodic arrays of carbon nanotubes[J]. Photonics and Nanostructures—Fundamentals and Applications,2011,9(4): 374-380.
    [17]
    钟万勰. 电磁波导的辛体系[J]. 大连理工大学学报, 2001,41(4): 379-387.(ZHONG Wan-xie. Symplectic system of electro-magnetic waveguide[J]. Journal of Dalian University of Technology,200141(4): 379-387.(in Chinese))
    [18]
    钟万勰. 周期电磁波导的能带辛分析[J]. 计算力学, 2001,18(4): 379-387.(ZHONG Wan-xie. Symplectic energy band analysis for periodical electro-magnetic wave guide[J]. Chinese Journal of Computational Mechanics,2001,18(4): 379-387.(in Chinese))
    [19]
    钟万勰. 电磁波导的半解析辛分析[J]. 力学学报, 2003,35(4): 401-410.(ZHONG Wan-xie. Symplectic semi-analytical method for electro-magnetic wave guide[J]. Acta Mechanica Sinica,2003,35(4): 401-410.(in Chinese))
    [20]
    Simovski C R, Belov P A, Atrashchenko A V, Kivshar Y S. Wire metamaterials: physics and applications[J]. Advanced Materials,2012,24(31): 4229-4248.
    [21]
    Fan S, Chapline M G, Franklin N R, Tombler T W, Cassell A M, Dai H. Self-oriented regular arrays of carbon nanotubes and their field emission properties[J]. Science,1999,283(5401): 512-514.
    [22]
    LIN Yue-he, LU Fang, TU Yi, REN Zhi-feng. Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles[J]. Nano Letters, 2004,4(2): 191-195.
    [23]
    Dresselhaus M S. Applied physics: nanotube antennas[J]. Nature,2004,432(7020): 959-960.
    [24]
    Maslovski S I, Silveirinha M G. Non-local permittivity from a quasi-static model for a class of wire media[J]. Physical Review B,2009,80(24): 245101.
    [25]
    Nefedov I S, Valagiannopoulos C A, Hashemi S M, Nefedov E I. Total absorption in asymmetric hyperbolic media[J]. Scientific Reports,2013,3: 2662.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1322) PDF downloads(1193) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return