WANG Zhen, QIN Yu-peng, ZOU Li, MA Rui-fang, ZHU Gui-xun. Quasi-Periodic Solution and Its Asymptotic Behavior for Camassa-Holm Equation[J]. Applied Mathematics and Mechanics, 2015, 36(9): 990-1002. doi: 10.3879/j.issn.1000-0887.2015.09.010
Citation: WANG Zhen, QIN Yu-peng, ZOU Li, MA Rui-fang, ZHU Gui-xun. Quasi-Periodic Solution and Its Asymptotic Behavior for Camassa-Holm Equation[J]. Applied Mathematics and Mechanics, 2015, 36(9): 990-1002. doi: 10.3879/j.issn.1000-0887.2015.09.010

Quasi-Periodic Solution and Its Asymptotic Behavior for Camassa-Holm Equation

doi: 10.3879/j.issn.1000-0887.2015.09.010
Funds:  The National Natural Science Foundation of China(51379033;50921001)
  • Received Date: 2015-05-13
  • Rev Recd Date: 2015-07-08
  • Publish Date: 2015-09-15
  • Many researchers have paid attention to the shallow water wave model Camassa-Holm (CH) equation over the last two decades. The one-periodic solution of CH equation based on the Hirota bilinear method had been presented in our previous work. In this paper, we offer quasi-periodic solution in genus two and its asymptotic behavior. First, we have rearranged the parameters appeared in the bilinear equation system, such as the coordinate transformation, extended bilinear form and Riemman theta function and so on. Then quasi-periodic solution of CH equation is presented, which is expressed by Riemann theta function in genus two. Second, asymptotic behavior of the quasi-periodic solution is discussed. It can be shown that this solution will degenerate into its two-soliton solution.
  • loading
  • [1]
    Camassa R, Holm D D. An integrable shallow water equation with peaked solitons[J].Physical Review Letters,1993,71(11): 1661-1664.
    [2]
    Camassa R, Holm D D, Hyman J M. A new integrable shallow water equation[J].Advances in Applied Machanics,1994,31: 1-33.
    [3]
    QIAO Zhi-jun. The Camassa-Holm hierarchy, N-dimensional integrable systems, and algebro-geometric solution on a symplectic submanifold commun[J].Communications in Mathematical Physics,2003,239(1/2): 309-341.
    [4]
    Fuchssteiner B, Fokas A S. Symplectic structures, their Bcklund transformations and hereditary symmetries[J].Physica D: Nonlinear Phenomena,1981,4(1): 47-66.
    [5]
    Johnson R S. Camassa-Holm, Korteweg-de Vries and related models for water waves[J].Journal of Fluid Mechanics,2002,455: 63-82.
    [6]
    Constantin A, Lannes D. The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations[J].Archive for Rational Mechanics and Analysis,2009,192(1): 165-186.
    [7]
    Parker A. On exact solutions of the regularized long-wave equation: a direct approach to partially integrable equations—I: solitary wave and solitons[J].Journal of Mathematical Physics,1995,36(7): 3498-3505.
    [8]
    Schiff J. The Camassa-Holm equation: a loop group approach[J].Physica D: Nonlinear Phenomena,1998,121(1/2): 24-43.
    [9]
    Constantin A. On the scattering problem for the Camassa-Holm equation[J].Proceedings of The Royal Society A,2001,457(2008): 953- 970.
    [10]
    Parker A. On the Camassa-Holm equation and a direct method of solution—I: bilinear form and solitary waves[J].Proceedings of The Royal Society A,2004,460(2050): 2929-2957.
    [11]
    Parker A. On the Camassa-Holm equation and a direct method of solution—II: soliton solutions[J].Proceedings of The Royal Society A,2005,461(2063): 3611-3632.
    [12]
    Parker A. On the Camassa-Holm equation and a direct method of solution—III:N -soliton solutions[J].Proceedings of The Royal Society A,2005,461(2064): 3893-3911.
    [13]
    Fan E G, Hon Y C. Quasiperiodic waves and asymptotic behavior for Bogoyavlenskii’s breaking soliton equation in (2+1) dimensions[J].Physical Review E,2008,78(3): 036607.
    [14]
    MA Wen-xiu, ZHOU Ru-guang, GAO Liang. Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in (2+1) dimensions[J].Modern Physics Letters A,2009,24(21): 1677-1688.
    [15]
    DAI Hui-hui, LI Yi-shen, SU Ting. Multi-soliton and multi-cuspon solutions of a Camassa-Holm hierarchy and their interactions[J].Journal of Physics A: Mathematical and Theoretical,2009,42(5): 055203.
    [16]
    DAI Hui-hui , LI Yi-shen. The interaction of the 〖WT5”BZ〗ω〖WT5”B4〗-soliton and 〖WT5”BZ〗ω〖WT5”B4〗-cuspon of the Camassa-Holm equation[J].Journal of Physics A: Mathematical and General,2005,38(42): 685-694.
    [17]
    Parker A. Cusped solitons of the Camassa-Holm equation—I: cuspon solitary wave and antipeakon limit[J].Chaos, Solitons & Fractals,2007,34(3): 730-739.
    [18]
    Parker A. Wave dynamics for peaked solitons of the Camassa-Holm equation[J].Chaos, Solitons & Fractals,2007,35(2): 220-237.
    [19]
    Parker A. Cusped solitons of the Camassa-Holm equation—II: binary cuspon-soliton interactions[J].Chaos, Solitons & Fractals,2009,41(3): 1531-1549.
    [20]
    Parker A. A factorization procedure for solving the Camassa-Holm equation[J].Inverse Problems,2006,22(2): 599-609.
    [21]
    Parker A, Matsuno Y. The peakon limits of soliton solutions of the Camassa-Holm equation[J].Journal of the Physical Society of Japan,2006,75(12): 124001.
    [22]
    Geronimo J S, Gesztesy F, Holden H. Algebro-Geometric solutions of the Baxter-Szeg difference equation[J].Communications in Mathematical Physics,2005,258(1): 149-177.
    [23]
    GENG Xian-guo, CAO Ce-wen. Decomposition of the (2+1)-dimensional Gardner equation and its quasi-periodic solutions[J].Nonlinearity,2001,14(6): 1433-1452.
    [24]
    Constantin A. Quasi-periodicity with respect to time of spatially periodic nite-gap solutions of the Camassa-Holm equation[J].Bulletin des Sciences Mathématiques,1998,122(7): 487-494.
    [25]
    Constantin A, McKean H P. A shallow water equation on the circle [J].Communications on Pure and Applied Mathematics,1999,52(8): 949-982.
    [26]
    Gesztesy F, Holden H. Algebro-geometry solutions of the Camassa-Holm hierarchy[J]. Revista Matemática Iberoamericana,2003,19(1): 73-142.
    [27]
    Gesztesy F, Holden H. Real-valued algebro-geometric solutions of the Camassa-Holm bierarchy[J].Philos Trans Roy Soc A,2008,366(1867): 1025-1054.
    [28]
    Kalla C, Klein C. New construction of algebro-geometric solutions to the Camassa-Holm equation and their numerical evaluation[J].Proceedings of The Royal Society A,2012,468(2141): 1371-1390.
    [29]
    Bobenko A I, Klein C, eds.Computational Approach to Riemann Surfaces [M]. Lecture Notes in Mathematics, Vol2013. Beirlin: Springer, 2011.
    [30]
    Trefethen L N.Spectral Methods in Matlab [M]. Software, Environments, Tools . Philadelphina, PA: SIAM, 2000.
    [31]
    Nakamura A. A direct method of calculating periodic wave solitons to nonlinear evolution equations—I: exact two-periodic wave solution[J].Journal of the Physical Society of Japan,1979,47(5): 1701-1705.
    [32]
    Frauendiener J, Klein C. Hyperelliptic theta functions and spectral methods[J].Journal of Computational and Applied Mathematics,2004,167(1): 193-218.
    [33]
    WANG Zhen, ZOU Li, ZONG Zhi. Periodic solutions of the Camassa-Holm equation based on the bilinear form [J].Journal of Physics A Mathematical and Theoretical,2011,44(35): 355204.
    [34]
    Hirota R.The Direct Method in Soliton Theory[M]. NagaiA, Nimmo J, Gilson C, eds. Cambridge Tracts in Mathematics. Cambridge: Cambridge University Press, 2004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1495) PDF downloads(773) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return