JING Hui-qin. Bivariate Vector-Valued Osculatory Rational Interpolation Based on the Taylor Operator[J]. Applied Mathematics and Mechanics, 2016, 37(4): 404-415. doi: 10.3879/j.issn.1000-0887.2016.04.008
Citation: JING Hui-qin. Bivariate Vector-Valued Osculatory Rational Interpolation Based on the Taylor Operator[J]. Applied Mathematics and Mechanics, 2016, 37(4): 404-415. doi: 10.3879/j.issn.1000-0887.2016.04.008

Bivariate Vector-Valued Osculatory Rational Interpolation Based on the Taylor Operator

doi: 10.3879/j.issn.1000-0887.2016.04.008
  • Received Date: 2015-11-16
  • Rev Recd Date: 2015-12-29
  • Publish Date: 2016-04-15
  • A new approach based on the Taylor operator was proposed for the bivariate vectorvalued osculatory rational interpolation. First, the rational interpolation basis functions of each order were defined by means of the known nodes. Second, a new type of interpolation operator similar to the Taylor formula for bivariate functions was established with the corresponding vector values and partial derivative values of each order. At last, the combined operations were carried out, and the explicit expressions of the bivariate vectorvalued osculatory rational interpolation functions of the 1st and 2nd orders were obtained. Naturally this approach was generalized to the kth order, and the error estimates were also made. The results of an example show that, this new approach is simple and formularized in calculation, and therefore potential for application.
  • loading
  • [1]
    Salzer H E. Note on osculatory rational interpolation[J]. Mathematics of Computation,1962,16(80): 486-491.
    [2]
    Claessens G. A new algorithm for osculatory rational interpolation[J]. Numerische Mathematik,1976,27(1): 77-83.
    [3]
    Kahng S W. Osculatory interpolation[J]. Mathematics of Computation,1969,23(107): 621-629.
    [4]
    Wuytack L. On the osculatory rational interpolation problem[J]. Mathematics of Computation,1975,29(131): 837-843.
    [5]
    Graves-Morris P R. Vector valued rational interpolants I[J]. Numerische Mathematik,1983,42(3): 331-348.
    [6]
    Claessens G. A useful identity for the rational Hermite interpolation table[J]. Numerische Mathematik,1978,29(2): 227-231.
    [7]
    Levrie P, Bultheel A. A note on Thiele n-fractions[J].Numerical Algorithms,1993,4(2): 225-239.
    [8]
    Debbourgo R. Accurate C2 rational interpolants in tension[J]. SIAM Journal on Numerical Analysis,1993,30(2): 595-607.
    [9]
    梁艳, 李美蓉. 矩形网格上切触有理插值的对偶[J]. 合肥师范学院学报, 2012,30(3): 5-7.(LIANG Yan, LI Mei-rong. The duality of osculatory rational interpolation over rectangular grids[J].Journal of Hefei Normal University,2012,30(3): 5-7.(in Chinese))
    [10]
    SU Ben-yue, SHENG Min, TANG Shuo, ZHU Gong-qin, HU Wan-bao. SN -type multivariate blending osculatory rational interpolation[J].Journal of University of Science and Technology of China,2009,39(6): 588-593.
    [11]
    Berrut J P, Mittelman H D. Matrices for the direct determination of the barycentric weights of rational interpolation[J].Journal of Computational and Applied Mathematics,1997,78(2): 355-370.
    [12]
    苏本跃, 盛敏. 自适应图像缩放的切触有理混合插值算法[J]. 计算机工程与应用, 2010,46(1): 196-199.(SU Ben-yue, SHENG Min. Adaptive algorithm for image interpolation based on blending osculatory rational interpolants[J].Computer Engineering and Applications,2010,46(1): 196-199.(in Chinese))
    [13]
    朱晓临. (向量)有理函数插值的研究及其应用[D]. 博士学位论文. 合肥: 中国科学技术大学, 2002.(ZHU Xiao-lin. Research on (vector) rational function interpolation and its application[D]. PhD Thesis. Hefei: University of Science and Technology of China, 2002.(in Chinese))
    [14]
    檀结庆. 连分式理论及其应用[M]. 北京: 科学出版社, 2007: 214-235.(TAN Jie-qing. Continued Fraction Theory and Its Application [M]. Beijing: Science Press, 2007: 214-235.(in Chinese))
    [15]
    李辰盛, 唐烁. 基于块的Lagrange-Salzer混合切触有理插值[J]. 合肥工业大学学报(自然科学版), 2008,31(7):1134-1137.(LI Chen-sheng, TANG Shuo. Block based Lagrange-Salzer blending osculatory rational interpolation[J].Journal of Hefei University of Technology (Natural Science),2008,31(7): 1134-1137.(in Chinese))
    [16]
    檀结庆, 侯萌萌. 类Hermite插值的切触有理插值[J]. 合肥工业大学学报 (自然科学版), 2006,29(8): 1042-1044.(TAN Jie-qing, HOU Meng-meng. Osculatory rational Hermite-like interpolation[J].Journal of Hefei University of Technology (Natural Science),2006,29(8): 1042-1044.(in Chinese))
    [17]
    唐杨新. 向量值切触有理插值存在性的判别方法[J]. 大学数学, 2011,27(2): 62-67.(TANG Yang-xin. A criterion for the existence of the vector-valued osculatory rational interpolation[J].College Mathematics,2011,27(2): 62-67.(in Chinese))
    [18]
    王成伟. 矩形网格上两类二元有理插值的存在性问题[J]. 北京服装学院学报 (自然科学版), 2011,31(1): 13-19.(WANG Cheng-wei. Existence problem for two classes of bivariate rational interpolation on rectangular grids[J].Journal of Beijing Institute of Clothing Technology (Natural Science Edition),2011,31(1): 13-19.(in Chinese))
    [19]
    梁艳, 唐烁. 矩形网格上Newton-Hermite-Thiele型切触有理插值[J]. 合肥工业大学学报 (自然科学版), 2007,30(7): 903-907.(LIANG Yan, TANG Shuo. Newton-Hermite-Thiele’s osculatory rational interpolation over rectangular grids[J].Journal of Hefei University of Technology (Natural Science),2007,30(7): 903-907.(in Chinese))
    [20]
    顾传青. 矩阵有理逼近及其在控制论中应用[D]. 博士学位论文. 上海: 上海大学, 2004.(GU Chuan-qing. Matrix valued rational approximation and applications in control theory[D]. PhD Thesis. Shanghai: Shanghai University, 2004.(in Chinese))
    [21]
    王仁宏, 朱功勤. 有理函数逼近及其应用[M]. 北京: 科学出版社, 2004: 146-178.(WANG Ren-hong, ZHU Gong-qin. Rational Function Approximation and Its Application [M]. Beijing: Science Press, 2004: 146-178.(in Chinese))
    [22]
    朱功勤, 檀结庆, 王洪燕. 预给极点的向量有理插值及性质[J]. 高等学校计算数学学报, 2000,22(2): 97-104.(ZHU Gong-qin,TAN Jie-qing,WANG Hong-yan. Algorithms and properties of vector valued rational interpolants with prescribed poles[J].Numerical Mathematies: A Journal of Chinese Universities,2000,22(2): 97-104.(in Chinese))
    [23]
    李昌文, 潘亚丽, 李强. 有理插值中不可达点的研究[J]. 大学数学, 2010,26(3): 50-55.(LI Chang-wen, PAN Ya-li, LI Qiang. A study of the unattainable point for rational interpolation[J].College Mathematics,2010,26(3): 50-55.(in Chinese))
    [24]
    荆科, 康宁. 二元切触有理插值公式[J]. 计算机工程与应用, 2013,49(12): 33-35.(JING Ke, KANG Ning. Formula of bivariate osculatory rational interpolation[J].Computer Engineering and Applications,2013,49(12): 33-35.(in Chinese))
    [25]
    马锦锦. 向量值有理插值的构造方法[J]. 九江学院学报(自然科学版), 2013(4): 59-62.(MA Jin-jin. The method of constructing vector-valued rational interpolation[J].Journal of Jiujiang University (Natural Science),2013(4): 59-62.(in Chinese))
    [26]
    荆科, 康宁, 王茂华. 二元切触有理插值函数的构造方法[J]. 计算机工程与应用, 2012,48(32): 56-59.(JING Ke, KANG Ning, WANG Mao-hua. Method of constructing bivariate osculatory rational interpolation function[J].Computer Engineering and Applications,2012,48(32): 56-59.(in Chinese))
    [27]
    荆科, 康宁. 矩形网格上的二元切触有理插值[J]. 应用数学和力学, 2015,36(6): 659-667.(JING Ke, KANG Ning. Bivariate osculatory rational interpolation on rectangular grids[J].Applied Mathematics and Mechanics,2015,36(6): 659-667.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (935) PDF downloads(460) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return