| Citation: | ZHENG Quan-shui, FU Yi-bin. Orientation Distribution Functions for Microstructures of Heterogeneous Materials(Ⅱ)-Crystal Distribution Functions and Irreducible Tensors Restricted by Various Material Symmetries[J]. Applied Mathematics and Mechanics, 2001, 22(8): 790-805. |
| [1] |
Molinari A,Canova G R,Ahzi S.A self consistent approach of the large deformation polycrystal viscoplasticity[J].Acta Metall Mater,1987,35(12):2983-2994.
|
| [2] |
Harren S V,Asaro R J.Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model[J].J Mech Phys Solids,1989,37(2):191-232.
|
| [3] |
Adams B L,Field D P.A statistical theory of creep in polycrystalline materials[J].Acta Metall Mater,1991,39(10):2405-2417.
|
| [4] |
Adams B L,Boehler J P,Guidi M,et al.Group theory and representation of microstructure and mechanical behaviour of polycrystals[J].J Mech Phys Solids,1992,40(4):723-737.
|
| [5] |
Molinari A,Canova G R,Ahzi S.A self consistent approach of the large deformation polycrystal viscoplasticity[J].Acta Metall Mater,1987,35(12):2983-2994.
|
| [6] |
Harren S V,Asaro R J.Nonuniform deformations in polycrystals and aspects of the validity of the Taylor model[J].J Mech Phys Solids,1989,37(2):191-232.
|
| [7] |
Adams B L,Field D P.A statistical theory of creep in polycrystalline materials[J].Acta Metall Mater,1991,39(10):2405-2417.
|
| [8] |
Adams B L,Boehler J P,Guidi M,et al.Group theory and representation of microstructure and mechanical behaviour of polycrystals[J].J Mech Phys Solids,1992,40(4):723-737.
|
| [9] |
Hahn T.Space-Group Symmetry[M].In:International Tables for Cry stallography,Vol.A,2nd Ed.Dordrecht:D Reidel.1987.
|
| [10] |
Zheng Q S.Theory of representations for tensor functions:A unified invariant approach to constitutive equations[J].Appl Mech Rew,1994,47(11):554)587.
|
| [11] |
Barut A O,Raczka R.Theory of Group Repr esentations and Applications[M].2nd Ed.Warsza-wa:Polish Scientific Publishers,1980.
|
| [12] |
BrLcker T,Tom Dieck T.Representations of Compact Lie Groups[M].New York:Springer-Ver-lag,1985.
|
| [13] |
Murnagham F D.The Theory of Group Representations[M].Baltimore,MD:Johns Hopkins Univ Press,1938.
|
| [14] |
Zheng Q S,Spencer A J M.On the canonical representations for Kronecker powers of orthogonal tensors with applications to material symmetry problems[J].Int J Engng Sci,1993,31(4):617-635.
|
| [15] |
Korn G A,Korn T M.Ma them atical Handbook for Scientists and Engineers[M].2nd Ed.NewYork:McGraw-Hill,1968.
|
| [16] |
Eringen A C.Mechanics of Continua[M].2nd Ed.New York:Wiley,1980.
|
| [17] |
Zhang J M,Rychlewski J.Structural tensors for anisotropic solids[J].Arch Mech,1990,42:267-277.
|
| [18] |
Zheng Q S,Boehler J P.The description,classification,and reality of material and physical symme-tries[J].Acta Mech,1994,102(1-4):73-89.
|
| [19] |
Smith G F,Smith M M,Rivlin R S.Integrity bases for a symmetric tensor and avector-the crystalclasses[J].Arch Ratl Mech Anal,1963,12(1):93-133.
|
| [20] |
Smith G F.Con stitutive Equations for Anisotropic and Isotropic Materials[M].Amsterdam:North-Holland,1994.
|
| [21] |
Spencer A J M.A note on the decomposition of tensors into traceless symmetric tensors[J].Int J Engng Sci,1970,8(8):475-481.
|
| [22] |
Hannabuss K C.The irreducible components of homogeneous functions and symmetric tensors[J].J Inst Maths Applics,1974,14(11):83-88.
|