留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

构成单材料裂纹和双材料界面裂纹有限应力集中的一般解析函数

段树金 藤井康寿 中川建治

段树金, 藤井康寿, 中川建治. 构成单材料裂纹和双材料界面裂纹有限应力集中的一般解析函数[J]. 应用数学和力学, 2018, 39(12): 1364-1376. doi: 10.21656/1000-0887.390030
引用本文: 段树金, 藤井康寿, 中川建治. 构成单材料裂纹和双材料界面裂纹有限应力集中的一般解析函数[J]. 应用数学和力学, 2018, 39(12): 1364-1376. doi: 10.21656/1000-0887.390030
DUAN Shujin, FUJII Koju, NAKAGAWA Kenji. Construction of General Analytic Functions With Finite Stress Concentration for Mono-Material Cracks and Bi-Material Interface Cracks[J]. Applied Mathematics and Mechanics, 2018, 39(12): 1364-1376. doi: 10.21656/1000-0887.390030
Citation: DUAN Shujin, FUJII Koju, NAKAGAWA Kenji. Construction of General Analytic Functions With Finite Stress Concentration for Mono-Material Cracks and Bi-Material Interface Cracks[J]. Applied Mathematics and Mechanics, 2018, 39(12): 1364-1376. doi: 10.21656/1000-0887.390030

构成单材料裂纹和双材料界面裂纹有限应力集中的一般解析函数

doi: 10.21656/1000-0887.390030
基金项目: 河北省自然科学基金(A2015210029)
详细信息
    作者简介:

    段树金(1955—),男,教授,博士,博士生导师(通讯作者. E-mail: duanshujin@stdu.edu.cn).

  • 中图分类号: TU528;O346

Construction of General Analytic Functions With Finite Stress Concentration for Mono-Material Cracks and Bi-Material Interface Cracks

  • 摘要: 对构成裂纹尖端附近有限应力集中解析函数的方法进行了综述.含裂纹平面问题的应力函数可以用无理函数和指数函数两种型式表示.对单材料裂纹,将裂纹长度作为参数,对无理函数型解析函数采用直接加权积分可以消除裂纹尖端应力的奇异性,构造有限连续的应力函数和尖劈型的张开位移函数.对指数函数型解析函数的间接积分适用于界面裂纹问题,但会使积分区间的应力分布出现正负反转和不合理的张开位移形状;结合选择不同权函数的叠加可以得到满足精度要求的有限应力集中解析函数.给出了中心裂纹和对称边裂纹在面内拉伸、剪切和弯曲等6种受力状态下的基本解.阐述了作为解析函数何以回避裂纹尖端应力奇异性的理由.
  • [1] WESTERGAARD H M. Bearing pressures and cracks[J]. Journal of Applied Mechanics,1939,6: 49-53.
    [2] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics & Physics of Solids,1960,8(2): 100-104.
    [3] BARENBLATT G I. The formation of equilibrium cracks during brittle fracture, general ideas and hypotheses, axially-symmetric cracks[J]. Journal of Applied Mathematics & Mechanics,1959,23(3): 434-444.
    [4] FERDJANI H, ABDELMOULA R. Propagation of a Dugdale crack at the edge of a half plate[J]. Continuum Mechanics & Thermodynamics,2018,30(8): 1-11.
    [5] TONG D, WU X R. Analysis of crack opening stresses for center- and edge-crack tension specimens[J]. Chinese Journal of Aeronautics,2014,27(2): 291-298.
    [6] 段树金, 儿岛弘行, 中川建治. 亀裂先端部分で有限な应力集中を与える应力関数[J]. 土木学会論文集, 1986,374: 399-407.(DUAN S J, KOJIAMA H, NAKAGAWA K. Stress functions with finite magnitude of stress concentration at crack tip[J]. Proc JSCE,1986,374: 399-407.(in Japanese))
    [7] 王承强, 郑长良. 裂纹扩展过程中线性内聚力模型计算的半解析有限元法[J]. 计算力学学报, 2006,23(2): 146-151.(WANG Chengqiang, ZHENG Changliang. Semi-analytical finite element method for linear cohesive force model in crack propagation[J]. Chinese Journal of Computational Mechanics,2006,23(2): 146-151.(in Chinese))
    [8] WU X, ANTHONY M W. Multiple solutions in cohesive zone models of fracture[J]. Engineering Fracture Mechanics,2017,177: 104-122.
    [9] HILLERBORG A. Analysis of fracture by means of the fictitious crack model, particularly for fiber reinforced concrete[J]. Endocrine Related Cancer,1980,2(4): 177-184.
    [10] BAZANT Z P, OHB H. Crack band theory for fracture of concrete[J]. Matériaux et Construction,1983,16(3): 155-177.
    [11] ELICES M, GUINCA G V, GMEZ I, et al. The cohesive zone model: advantages, limitations and challenges[J]. Engineering Fracture Mechanics,2002,69(2): 137-163.
    [12] REDDY K C, SUBRAMANIAMK V L. Analysis for multi-linear stress-crack opening cohesiverelationship: application to macro-synthetic fiber reinforcedconcrete[J]. Engineering Fracture Mechanics,2017,169: 128-145.
    [13] ISSA S, ELIASSON S, LUNDBERG A, et al. Cohesive zone modeling of crack propagation influenced by martensiticphase transformation[J]. Materials Science & Engineering A,2018,712: 564-573.
    [14] DO B C, LIU W, YANG Q D, et al. Improved cohesive stress integration schemes for cohesive zoneelements[J]. Engineering Fracture Mechanics,2013,107(7): 14-28.
    [15] TRYDING J, RISTINMAA M. Normalization of cohesive laws for quasi-brittle materials[J]. Engineering Fracture Mechanics,2017,178: 333-345.
    [16] OTTOSEN N S, RISTINMAA M. Thermodynamically based fictitious crack/interface model for generalnormal and shear loading[J]. International Journal of Solids and Structures,2013,50(22/23): 3555-3561.
    [17] 管俊峰, 卿龙邦, 赵顺波. 混凝土三点弯曲梁裂缝断裂全过程数值模拟研究[J]. 计算力学学报, 2013,30(1): 143-148.(GUAN Junfeng, QING Longbang, ZHAO Shunbo. Research on numerical simulation on the whole cracking processes of three-point bending notch concrete beams[J]. Chinese Journal of Computational Mechanics,2013,30(1): 143-148.(in Chinese))
    [18] 张鹏, 胡小飞, 姚伟岸. 内聚力模型裂纹问题分析的解析奇异单元[J]. 固体力学学报, 2017,38(2): 157-164.(ZHANG Peng, HU Xiaofei, YAO Weian. An analytical singular element to study the cohesive zone model for cracks[J]. Chinese Journal of Solid Mechanics,2017,38(2): 157-164.( in Chinese))
    [19] 黄才政, 郑丹. 无限大平板黏聚裂纹模型的数值解[J]. 水利学报, 2014,45(S1): 137-142.(HUANG Caizheng, ZHENG Dan. Numerical solution of the cohesive crack model in finite plate[J]. Journal of Hydraulic Engineering,2014,45(S1): 137-142.(in Chinese))
    [20] DUAN S J, NAKAGAWA K. Stress functions with finite stress concentration at the crack tips for a central cracked panel[J]. Engineering Fracture Mechanics,1988,29(5): 517-526.
    [21] DUAN S J, FUJII K, NAKAGAWA K. Finite stress concentrations and J-integrals from normal loads on a penny-shaped crack[J]. Engineering Fracture Mechanics,1989,32(2): 167-176.
    [22] DUAN S J, NAKAGAWA K, SAKAIDA T. A mathematical model to approach the fracture process of overconsolidatedclay[J]. Engineering Fracture Mechanics,1991,38(6): 361-369.
    [23] FUJII K, DUAN S J, NAKAGAWA K. A mathematical model for fracture process of four point bending concrete beam[J]. Engineering Fracture Mechanics,1991,40(1): 37-41.
    [24] 段树金, 中川建治. せん断を受ける円盤状亀裂の周边で有限な应力集中を与える弹性解について[J]. 土質工学論文報告集, 1988,28(1): 153-160.(DUAN S J, NAKAGAWA K. Finite stress concentrations around a penny-shaped crack in three-dimensional body under shear loading[J]. Proc JSSC,1988,28(1): 153-160.(in Japanese))
    [25] 段树金, 中川建治. 含有直线状裂纹正交异性板的平面问题的应力函数[J]. 应用数学和力学, 1988,9(6): 491-498.(DUAN Shujin, NAKAGAWA K. Stress functions for central straight cracked anisotropic plates[J]. Applied Mathematics and Mechanics,1988,9(6): 491-498.(in Chinese))
    [26] 胡启平. Ⅲ型静态与运动Griffith裂纹的有限应力集中解[J]. 工程力学, 1995,12(S1): 474-478.(HU Qiping. Finite stress concentration solutions of mode-Ⅲ static and moving Griffith cracks[J]. Engineering Mechanics,1995,12(S1): 474-478.(in Chinese))
    [27] ZHU M, CHANG W V. An unsymmetrical fracture process zone model and its application to the problem of radical crack with an inclusion in longitudinal shear deformation[C]// Fracture Mechanics of Concrete Structures, Proceedings FRAMCOS-3.Freiburg, Germany, 1997.
    [28] 段树金, 前田春和, 藤井康寿, 等. 沿直线有多条裂纹的薄板弯曲问题[J]. 工程力学, 1999,16(3): 21-29.(DUAN Shujin, MAEDA H, FUJII K, et al. On the bending of an elastic plate containing multi-cracks[J]. Engineering Mechanics,1999,16(3): 21-29.(in Chinese))
    [29] 栖原秀郎, 中川建治. 亀裂先端で有限な応力集中を構成する応力関数に関する研究[J]. 土木学会論文集, 1994,501: 65-74.(SUHARA H, NAKAGAWA K. Studies on the stress function with finite stress concentration at crack tip[J]. Proc JSCE,1994,501: 65-74.(in Japanese))
    [30] 中川建治, 国富康志, 藤井康寿. クラック先端で有限で滑らかな応力集中を与える応力関数の構成法[J]. 名城大学理工学部研究報告, 2002,42: 62-69.(NAKAGAWA K, KUNITOMI Y, FUJII K. Introductions of stress functions with finite magnitude of stress concentrations at the crack tips in a infinite plate[J]. Research Reports of the Faculty of Science and Technology Meijou Univ,2002,42: 62-69.(in Japanese))
    [31] 段树金, 张彦龙, 安蕊梅. 基于裂纹尖端二阶弹性解的断裂过程区尺度[J]. 应用数学和力学, 2013,34(6): 598-605.(DUAN Shujin, ZHANG Yanlong, AN Ruimei. Fracture process zone size based on the secondary elastic crack tip stress solution[J]. Applied Mathematics and Mechanics,2013,34(6): 598-605.(in Chinese))
    [32] AN Ruimei, DUAN Shujin, GUO Quanmin. A new method to determine tensile strain softening curve of quasi-brittle materials[C]// Sustainable Solutions in Structural Engineering and Construction, Proc of ASEA-SEC-2.Bangkok, Thailand, 2014: 177-182.
    [33] DUAN S J, YAZAKI H, NAKAGAWA K. A crack at the interface of an elastic half plane and a rigid body[J]. Engineering Fracture Mechanics,1989,32(4): 573-580.
    [34] FUJII K, KATO Y, DUAN S J, et al. Stress analysis around a partially bonded rigid cylinder in an elastic medium with process zones[J]. Engineering Fracture Mechanics,1993,45(1): 31-38.
    [35] FUJII K, NAKAGAWA K, DUAN S, et al. Stress function with finite magnitude of stress concentration around an interface crack[J]. Engineering Fracture Mechanics,1994,47(6): 881-891.
    [36] 藤井康寿, 中川建治. 面内引張りを受ける境界面き裂問題の応力関数[J]. 土木学会論文集, 1994,502: 23-32.(FUJII K, NAKAGAWA K. Stress function around an interface crack under uniform tension at infinity[J]. Proc of JSCE,1994,502: 23-32.(in Japanese))
    [37] MURASE Y, DUAN S J, NAKAGAWA K. Stress analysis around a circular interface crack between dissimilar media loaded by uniform tension at infinity[J]. Engineering Fracture Mechanics,1994,48(3): 325-337.
    [38] MURASE Y, NAKAGAWA K, DUAN S. Introduction of stress functions around a circular interface crack between dissimilar materials[J]. Engineering Fracture Mechanics,1996,53(4): 661-673.
    [39] 国富康志, 藤井康寿, 中川建治. 面内力問題における等方性き裂と異材界面き裂に対して適用可能な応力関数[J]. 材料,2005,54(9): 946-951.(KUNITOMI Y, FUJII K, NAKAGAWA K. Some applicable stress functions for an isotropic crack and an interface crack in in-plane problems[J]. J Soc Mat Japan,2005,54(9): 946-951.(in Japanese))
    [40] 中川建治, 藤井康寿. 異材界面き裂問題の解析法に関する基礎的な研究[J]. 名城大学理工学部研究報告, 2008,48: 32-35.(NAKAGAWA K, FUJII K. A Study of analytical method of solution of interface crack problems in an infinite plate[J]. Research Reports of the Faculty of Science and Technology Meijou University,2008,48: 32-35.(in Japanese))
    [41] ERDOGAN F. Stress distribution in a nonhomogeneous elastic plane with cracks[J]. Trans ASME Series E, Journal of Applied Mechanics,1963,30(2): 232-236.
    [42] ENGLAND A H. A crack between dissimilar media[J]. ASME Journal of Applied Mechanics,1965,32(2): 400-402.
    [43] MONFARED M M, AYATOLLAHI M, BAGHERI R. In-plane stress analysis of dissimilar materials with multiple interface cracks[J]. Applied Mathematical Modelling,2016,40: 8464-8474.
    [44] COMNINOU M. The interface crack[J]. Transaction of the ASME Journal of Applied Mechanics,1977,44(4): 631-636.
    [45] 安蕊梅, 段树金. 低体积含量的钢纤维混凝土三折线拉应变软化曲线的确定[J]. 石家庄铁道大学学报(自然科学版), 2017,30(1): 14-18.(AN Ruimei, DUAN Shujin. Determination of trilinear tension softening curve of reinforced concrete with steel fiber in low volume-ratio[J]. Journal of Shijiazhuang Tiedao University(Natural Science Edition),2017,30(1): 14-18.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1127
  • HTML全文浏览量:  157
  • PDF下载量:  679
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-22
  • 修回日期:  2018-02-03
  • 刊出日期:  2018-12-01

目录

    /

    返回文章
    返回