留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

车桥耦合系统随机振动的时域显式解法

苏成 钟春意 周立成

苏成, 钟春意, 周立成. 车桥耦合系统随机振动的时域显式解法[J]. 应用数学和力学, 2017, 38(1): 99-108. doi: 10.21656/1000-0887.370510
引用本文: 苏成, 钟春意, 周立成. 车桥耦合系统随机振动的时域显式解法[J]. 应用数学和力学, 2017, 38(1): 99-108. doi: 10.21656/1000-0887.370510
SU Cheng, ZHONG Chun-yi, ZHOU Li-cheng. Random Vibration Analysis of Coupled Vehicle-Bridge Systems With the Explicit Time-Domain Method[J]. Applied Mathematics and Mechanics, 2017, 38(1): 99-108. doi: 10.21656/1000-0887.370510
Citation: SU Cheng, ZHONG Chun-yi, ZHOU Li-cheng. Random Vibration Analysis of Coupled Vehicle-Bridge Systems With the Explicit Time-Domain Method[J]. Applied Mathematics and Mechanics, 2017, 38(1): 99-108. doi: 10.21656/1000-0887.370510

车桥耦合系统随机振动的时域显式解法

doi: 10.21656/1000-0887.370510
基金项目: 国家自然科学基金(51678252)
详细信息
    作者简介:

    苏成(1968—),男,教授,博士,博士生导师(通讯作者. E-mail: cvchsu@scut.edu.cn).

  • 中图分类号: O324;U441+.3(/sup>

Random Vibration Analysis of Coupled Vehicle-Bridge Systems With the Explicit Time-Domain Method

Funds: The National Natural Science Foundation of China(51678252)
  • 摘要: 在桥面和轨道随机不平顺作用下,车桥耦合系统振动是一个典型的非平稳随机振动问题.笔者分别建立表征物理演变机制的车辆系统和桥梁系统的动力响应显式表达式,然后利用车桥之间的运动相容条件,建立车桥之间接触力关于桥面不平顺的显式表达式.在此基础上,即可直接利用统计矩运算法则,获得车桥接触力的统计矩演化规律,并进一步计算车辆系统和桥梁系统关键响应的演变统计矩.此外,也可以基于车桥接触力关于桥面不平顺的显式表达式,高效地进行随机模拟(即Monte Carlo模拟, MCS),以获得车桥耦合系统关键响应的演变统计矩及其他统计信息.在上述过程中,由于实现了车桥耦合系统物理演变机制和概率演化规律的相对分离,在响应统计矩计算中,无需反复求解车桥耦合系统的运动微分方程,且可以仅针对车桥接触力及其他所关注的关键响应开展降维计算,大幅提高了车桥耦合系统随机振动的计算效率.数值算例表明,所提出的方法具有理想的计算精度和计算效率.
  • [1] 翟婉明. 车辆-轨道耦合动力学(上册)[M]. 第4版. 北京: 科学出版社, 2014: 120-128.(ZHAI Wan-ming. Vehicle-Track Coupling Dynamics(Volume One) [M]. 4th ed. Beijing: Science Press, 2014: 120-128.(in Chinese))
    [2] 夏禾, 张楠. 车辆与结构动力相互作用[M]. 第2版. 北京: 科学出版社, 2005: 93-105.(XIA He, ZHANG Nan. Dynamic Interaction of Vehicles and Structures [M]. 2nd ed. Beijing: Science Press, 2005: 93-105.(in Chinese))
    [3] 雷晓燕. 铁路轨道结构数值分析方法[M]. 北京: 中国铁道出版社, 1998: 37-41.(LEI Xiao-yan. Numerical Methods for Analysis of Railway Track Structures [M]. Beijing: China Railway Publishing House, 1998: 37-41.(in Chinese))
    [4] Au F T K, Wang J J, Cheung Y K. Impact study of cable-stayed railway bridges with random rail irregularities[J]. Engineering Structures,2002,24(5): 529-541.
    [5] Lei X, Noda N A. Analyses of dynamic response of vehicle and track coupling system with random irregularity of track vertical profile[J]. Journal of Sound and Vibration,2002,258(1): 147-165.
    [6] WU Yean-seng, YANG Yeong-bin. Steady-state response and riding comfort of trains moving over a series of simply supported bridges[J]. Engineering Structures,2003,25(2): 251-265.
    [7] 晋智斌, 强士中, 李小珍. 轨道不平顺激励下车辆-桥梁垂向随机振动方差解法[J]. 铁道学报,2008,30(6): 63-68.(JIN Zhi-bin, QIANG Shi-zhong, LI Xiao-zhen. Covariance method for vehicle-bridge vertical stochastic vibration excited by rail irregularities[J]. Journal of the China Railway Society,2008,30(6): 63-68.(in Chinese))
    [8] Li J Q, Leng X L, Fang T. Evolutionary random response problem of a coupled vehicle-bridge system[J]. Archive of Applied Mechanics,2002,72(6/7): 536-544.
    [9] 叶茂, 谭平, 任珉, 等. 多个车辆荷载作用下桥梁演变随机振动分析[J]. 振动工程学报, 2010,23(3): 269-274.(YE Mao, TAN Ping, REN Min, et al. Evolutionary random vibration analysis of a bridge subjected to moving vehicles[J]. Journal of Vibration Engineering,2010,23(3): 269-274.(in Chinese))
    [10] Zhang Z C, Lin J H, Zhang Y H,et al. Nonstationary random vibration analysis of coupled vehicle-bridge systems[J]. Engineering Computations,2010,27(6): 712-732.
    [11] Lu F, Lin J H, Kennedy D,et al. An algorithm to study non-stationary random vibrations of vehicle-bridge systems[J]. Computers & Structures,2009,87(3/4): 177-185.
    [12] ZENG Zhi-ping, ZHAO Yan-gang, XU Wen-tao, et al. Random vibration analysis of train-bridge under track irregularities and traveling seismic waves using train-slab track-bridge interaction model[J]. Journal of Sound and Vibration,2015,342: 22-43.
    [13] YU Zhi-wu, MAO Jian-feng, GUO Feng-qi, et al. Non-stationary random vibration analysis of a 3D train-bridge system using the probability density evolution method[J]. Journal of Sound and Vibration,2015,366: 173-189.
    [14] 苏成, 徐瑞. 非平稳随机激励下结构体系动力可靠度时域解法[J]. 力学学报,2010,42(3): 512-520.(SU Cheng, XU Rui. Time-domain method for dynamic reliability of structural systems subjected to non-stationary random excitations[J]. Chinese Journal of Theoretical and Applied Mechanics,2010,42(3): 512-520.(in Chinese))
    [15] SU Cheng, XU Rui. Random vibration analysis of structures by a time-domain explicit formulation method[J]. Structural Engineering and Mechanics,2014,52(2): 239-260.
    [16] SU Cheng, HUANG Huan, MA Hai-tao. Fast equivalent linearization method for nonlinear structures under nonstationary random excitations[J]. Journal of Engineering Mechanics,2016,142(8): 04016049.
    [17] HU Zhi-qiang, SU Cheng, CHEN Tai-cong, et al. An explicit time-domain approach for sensitivity analysis of non-stationary random vibration problems[J]. Journal of Sound and Vibration,2016,382: 122-139.
    [18] 苏成, 黄志坚, 刘小璐. 高层建筑地震作用计算的时域显式随机模拟法[J]. 建筑结构学报, 2015,36(1): 13-22.(SU Cheng, HUANG Zhi-jian, LIU Xiao-lu. Time-domain explicit random simulation method for seismic analysis of tall buildings[J]. Journal of Building Structures,2015,36(1): 13-22.(in Chinese))
    [19] 苏成, 徐瑞, 刘小璐, 等. 大跨度空间结构抗震分析的非平稳随机振动时域显式法[J]. 建筑结构学报, 2011,32(11): 169-176.(SU Cheng, XU Rui, LIU Xiao-lu, et al. Non-stationary seismic analysis of large-span spatial structures by time-domain explicit method[J]. Journal of Building Structures,2011,32(11): 169-176.(in Chinese))
    [20] 苏成, 李保木, 陈太聪, 等. 粘滞阻尼器减震结构非线性随机振动的时域显式降维迭代随机模拟法[J]. 计算力学学报, 2016,33(4): 556-563.(SU Cheng, LI Bao-mu, CHEN Tai-cong, et al. Nonlinear random vibration analysis of energy-dissipation structures with viscous dampers by random simulation method based on explicit time-domain dimension-reduced iteration scheme[J]. Chinese Journal of Computational Mechanics, 2016,33(4): 556-563.(in Chinese))
    [21] Shinozuka M. Simulation of multivariate and multidimensional random processes[J]. Journal of the Acoustical Society of America,1971,49(1B): 357-368.
    [22] 张楠, 夏禾. 基于全过程迭代的车桥耦合动力系统分析方法[J]. 中国铁道科学, 2013,34(5): 32-38.(ZHANG Nan, XIA He. A vehicle-bridge interaction dynamic system analysis method based on inter-system iteration[J]. China Railway Science,2013,34 (5): 32-38.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1257
  • HTML全文浏览量:  177
  • PDF下载量:  1473
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-26
  • 修回日期:  2016-12-28
  • 刊出日期:  2017-01-15

目录

    /

    返回文章
    返回