留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构系统识别不确定性分析的Bayes方法及其进展

颜王吉 曹诗泽 任伟新

颜王吉, 曹诗泽, 任伟新. 结构系统识别不确定性分析的Bayes方法及其进展[J]. 应用数学和力学, 2017, 38(1): 44-59. doi: 10.21656/1000-0887.370571
引用本文: 颜王吉, 曹诗泽, 任伟新. 结构系统识别不确定性分析的Bayes方法及其进展[J]. 应用数学和力学, 2017, 38(1): 44-59. doi: 10.21656/1000-0887.370571
YAN Wang-ji, CAO Shi-ze, REN Wei-xin.. Uncertainty Quantification for System Identification Utilizing the Bayesian Theory and Its Recent Advances[J]. Applied Mathematics and Mechanics, 2017, 38(1): 44-59. doi: 10.21656/1000-0887.370571
Citation: YAN Wang-ji, CAO Shi-ze, REN Wei-xin.. Uncertainty Quantification for System Identification Utilizing the Bayesian Theory and Its Recent Advances[J]. Applied Mathematics and Mechanics, 2017, 38(1): 44-59. doi: 10.21656/1000-0887.370571

结构系统识别不确定性分析的Bayes方法及其进展

doi: 10.21656/1000-0887.370571
基金项目: 国家自然科学基金(51408176;51278163);国家重点研发计划(2016YFE0113400)
详细信息
    作者简介:

    颜王吉(1985—),男,研究员,博士,硕士生导师(E-mail: civilyanwj@gmail.com);任伟新(1960—),男,教授,博士,博士生导师(通讯作者. E-mail: renwx@hfut.edu.cn).

  • 中图分类号: O32

Uncertainty Quantification for System Identification Utilizing the Bayesian Theory and Its Recent Advances

Funds: The National Natural Science Foundation of China(51408176;51278163); The National Key Research and Development Project of China(2016YFE0113400)
  • 摘要: 受测试误差、建模误差、数值离散化以及环境变异等因素的影响,结构系统识别过程不可避免地存在不确定性,因此有必要引入概率统计方法来提高其鲁棒性,为工程结构安全监测提供更为可靠的结果.近年来,Bayes(贝叶斯)方法因为其诸多优势在系统识别领域受到了广泛关注.该文梳理了Bayes系统识别的历史脉络和研究进展.从Bayes系统识别的理论框架出发,分析了量化系统识别不确定性两类方法的适用条件与局限性.此外,文章综述了Bayes方法在模态参数识别、有限元模型修正以及结构损伤识别方面进行不确定性分析的理论、实现及其应用.最后对基于Bayes方法进行系统识别研究的发展趋势做出了展望.
  • [1] 禹丹江. 土木工程结构模态参数识别——理论、 实现与应用[D]. 博士学位论文. 福州: 福州大学, 2006.(YU Dan-jiang. Modal parameter identification of civil engineering structures—theory, implementation and application[D]. PhD Thesis. Fuzhou: Fuzhou University, 2006.(in Chinese))
    [2] 李炜明, 董莪, 朱宏平. 土木工程系统辨识统计方法的现状与展望[J]. 振动与冲击, 2012,31(11): 42-47.(LI Wei-ming, DONG E, ZHU Hong-ping. Progress of system identification with statistical methods in civil engineering[J]. Journal of Vibration and Shock,2012,31(11): 42-47.(in Chinese))
    [3] Beck J L, Katafygiotis L S. Updating models and their uncertainties—I: Bayesian statistical framework[J]. Journal of Engineering Mechanics,1998,124(4): 455-461.
    [4] Katafygiotis L S, Beck J L. Updating models and their uncertainties—II: model identifiability[J]. Journal of Engineering Mechanics, 1998,124(4):463-467.
    [5] YAN Wang-ji. Wireless sensor network based structural health monitoring accommodating multiple uncertainties[D]. PhD Thesis. Hong Kong: Hong Kong University of Science and Technology, 2013.
    [6] Housner G W, Bergman L A, Caughey T K,et al. Structural control: past, present, and future[J]. Journal of Engineering Mechanics,1997,123(9): 897-971.
    [7] Beck J L. Bayesian system identification based on probability logic[J]. Structural Control and Health Monitoring,2010,17(7): 825-847.
    [8] 茆诗松. 贝叶斯统计[M]. 北京: 中国统计出版社, 1999.(MAO Shi-song. Bayesian Statistics [M]. Beijing: China Statistics Press, 1999.(in Chinese))
    [9] Bayes T. An essay towards solving a problem in the doctrine of chances[J]. Resonance,2003,8(4): 80-88.
    [10] CHEUNG Sai-hung. Stochastic analysis, model and reliability updating of complex systems with applications to structural dynamics[D]. PhD Thesis. Pasadena, CA: California Institute of Technology, 2009.
    [11] CHING Jian-ye, CHEN Yi-chu. Transitional Markov chain Monte Carlo method for Bayesian model updating, model class selection, and model averaging[J]. Journal of Engineering Mechanics,2007,133(7): 816-832.
    [12] Katafygiotis L S, LAM Heung-fai. Tangential-projection algorithm for manifold representation in unidentifiable model updating problems[J]. Earthquake Engineering & Structural Dynamics,2002,31(4): 791-812.
    [13] YUEN Ka-veng. Structural modal identification using ambient dynamic data[D]. Master Thesis. Hong Kong: Hong Kong University of Science and Technology, 1999.
    [14] YUEN Ka-veng, Katafygiotis L S. Bayesian fast Fourier transform approach for modal updating using ambient data[J]. Advances in Structural Engineering,2003,6(2): 81-95.
    [15] YUEN Ka-veng, Katafygiotis L S, Beck J L. Spectral density estimation of stochastic vector processes[J]. Probabilistic Engineering Mechanics,2002,17(3):265-272.
    [16] Katafygiotis L S, YUEN Ka-veng. Bayesian spectral density approach for modal updating using ambient data[J]. Earthquake Engineering & Structural Dynamics,2001,30(8): 1103-1123.
    [17] YUEN Ka-veng, Katafygiotis L S. Bayesian time-domain approach for modal updating using ambient data[J]. Probabilistic Engineering Mechanics,2001,16(3): 219-231.
    [18] YUEN Ka-veng, Beck J L, Katafygiotis L S. Probabilistic approach for modal identification using non-stationary noisy response measurements only[J]. Earthquake Engineering & Structural Dynamics,2002,31(4): 1007-1023.
    [19] YUEN Ka-veng. Bayesian Methods for Structural Dynamics and Civil Engineering [M]. New York: John Wiley & Sons Ltd, 2010.
    [20] AU Siu-kui. Fast Bayesian FFT method for ambient modal identification with separated modes[J]. Journal of Engineering Mechanics,2011,137(3): 214-226.
    [21] AU Siu-kui. Fast Bayesian ambient modal identification in the frequency domain, part I: posterior most probable value[J]. Mechanical Systems and Signal Processing,2012,26: 60-75.
    [22] AU Siu-kui. Fast Bayesian ambient modal identification in the frequency domain, part II: posterior uncertainty[J]. Mechanical Systems and Signal Processing,2012,26: 76-90.
    [23] AU Siu-kui, ZHANG Feng-liang. On assessing the posterior mode shape uncertainty in ambient modal identification[J]. Probabilistic Engineering Mechanics,2011,26(3): 427-434.
    [24] AU Siu-kui. Uncertainty law in ambient modal identification—part I: theory[J]. Mechanical Systems and Signal Processing,2014,48(1/2): 15-33.
    [25] AU Siu-kui. Uncertainty law in ambient modal identification—part II: implication and field verification[J]. Mechanical Systems and Signal Processing,2014,48(1/2): 34-48.
    [26] AU Siu-kui. Connecting Bayesian and frequentist quantification of parameter uncertainty in system identification[J]. Mechanical Systems and Signal Processing,2012,29:328-342.
    [27] AU Siu-kui, ZHANG Feng-liang, NI Yan-chun. Bayesian operational modal analysis: theory, computation, practice[J]. Computers & Structures,2013,126: 3-14.
    [28] AU Siu-kui, NI Yan-chun. Fast Bayesian modal identification of structures using known single-input forced vibration data[J]. Structural Control and Health Monitoring,2014,21: 381-402.
    [29] ZHANG Feng-liang, NI Yan-chun, AU Siu-kui, et al. Fast Bayesian approach for modal identification using free vibration data, part I: most probable value[J]. Mechanical Systems and Signal Processing,2016,70/71: 209-220.
    [30] NI Yan-chun, ZHANG Feng-liang, LAM Heung-fai, et al. Fast Bayesian approach for modal identification using free vibration data, part II: posterior uncertainty and application[J]. Mechanical Systems and Signal Processing,2016,70/71: 221-244.
    [31] AU Siu-kui. Assembling mode shapes by least squares[J]. Mechanical Systems and Signal Processing,2011,25(1): 163-179.
    [32] AU Siu-kui, ZHANG Feng-liang. Fast Bayesian ambient modal identification incorporating multiple setups[J]. Journal of Engineering Mechanics,2012,138(7): 800-815.
    [33] ZHANG Feng-liang, AU Siu-kui, LAM Heung-fai. Assessing uncertainty in operational modal analysis incorporating multiple setups using a Bayesian approach[J]. Structural Control and Health Monitoring,2015,22(3): 395-416.
    [34] AU Siu-kui, ZHANG Feng-liang. Ambient modal identification of a primary-secondary structure by fast Bayesian FFT method[J]. Mechanical Systems & Signal Processing,2012,28: 280-296.
    [35] AU Siu-kui, NI Yan-chun, ZHANG Feng-liang, et al. Full-scale dynamic testing and modal identification of a coupled floor slab system[J]. Engineering Structures,2012,37(4): 167-178.
    [36] AU Siu-kui, ZHANG Feng-liang, TO Ping. Field observations on modal properties of two tall buildings under strong wind[J]. Journal of Wind Engineering and Industrial Aerodynamics,2012,101: 12-23.
    [37] YAN Wang-ji, Katafygiotis L S. A two-stage fast Bayesian spectral density approach for ambient modal analysis. Part I: posterior most probable value and uncertainty[J]. Mechanical Systems & Signal Processing,2014,54/55: 139-155.
    [38] YAN Wang-ji, Katafygiotis L S. A two-stage fast Bayesian spectral density approach for ambient modal analysis. Part II: mode shape assembly and case studies[J]. Mechanical Systems & Signal Processing,2015,54/55: 156-171.
    [39] 万华平. 结构动力不确定性及其随机模型修正方法研究[D]. 博士学位论文. 长沙: 中南大学, 2014.(WAN Hua-ping. Research on structural dynamic uncertainty and its stochastic model updating method[D]. PhD Thesis. Changsha: Central South University.(in Chinese))
    [40] Beck J L, AU Siu-kui, Vanik M W. Monitoring structural health using a probabilistic measure[J]. Computer-Aided Civil and Infrastructure Engineering,2001,16(1): 1-11.
    [41] Vanik M W, Beck J L, Au S K. Bayesian probabilistic approach to structural health monitoring[J]. Journal of Engineering Mechanics,2000,126(7): 738-745.
    [42] CHING Jian-ye, Muto M, Beck J L. Structural model updating and health monitoring with incomplete modal data using Gibbs sampler[J]. Computer-Aided Civil and Infrastructure Engineering,2006,21(4): 242-257.
    [43] CHING Jian-ye, Beck J L. Bayesian analysis of the phase II IASC-ASCE structural health monitoring experimental benchmark data[J]. Journal of Engineering Mechanics,2004,130(10): 1233-1244.
    [44] CHING Jian-ye, Beck J L. New Bayesian model updating algorithm applied to a structural health monitoring benchmark[J]. Structural Health Monitoring,2004,3(4): 313-332.
    [45] YUEN Ka-veng, Beck J L, Katafygiotis L S. Efficient model updating and health monitoring methodology using incomplete modal data without mode matching[J]. Structural Control & Health Monitoring,2006,13(1): 91-107.
    [46] YAN Wang-ji, Katafygiotis L S. A novel Bayesian approach for structural model updating utilizing statistical modal information from multiple setups[J]. Structural Safety,2015,52: 260-271.
    [47] Papadimitriou C, Papadioti D C. Component mode synthesis techniques for finite element model updating[J]. Computers & Structures,2013,126(1):15-28.
    [48] Jensen H A, Millas E, Kusanovic D, et al. Model-reduction techniques for Bayesian finite element model updating using dynamic response data[J]. Computer Methods in Applied Mechanics and Engineering,2014,279: 301-324.
    [49] Papadimitriou C, Papadioti D C. Fast Computing Techniques for Bayesian Uncertainty Quantification in Structural Dynamics [M]//Simmermacher T, Cogan S, Moaveni B, et al, ed. Topics in Model Validation and Uncertainty Quantification.Vol5. New York: Springer, 2013: 25-31.
    [50] Craig Jr R R. Structural Dynamics: An Introduction to Computer Methods [M]. New York: John Wiley and Sons, 1981.
    [51] Wan H P, Ren W X. Stochastic model updating utilizing Bayesian approach and Gaussian process model[J]. Mechanical Systems and Signal Processing,2016,70: 245-268.
    [52] Behmanesh I, Moaveni B, Lombaert G, et al. Hierarchical Bayesian model updating for structural identification[J]. Mechanical Systems & Signal Processing,2015,64: 360-376.
    [53] Gamerman D, Lopes H F. Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference [M]. Boca Raton: Chapman & Hall, 2006.
    [54] AU Siu-kui, Beck J L. A new adaptive importance sampling scheme for reliability analysis[J]. Structural Safety,1999,21(2): 135-158.
    [55] Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing[J]. Science,1983,220(4598): 671-680.
    [56] Beck J L, AU Siu-kui. Bayesian updating of structural models and reliability using Markov chainMonte Carlo simulation[J]. Journal of Engineering Mechanics,2002,128(4): 380-391.
    [57] Goller B, Schuller G I. Investigation of model uncertainties in Bayesian structural model updating[J]. Journal of Sound & Vibration,2011,330(25): 6122-6136.
    [58] ZHENG Wei, YU Yi. Bayesian probabilistic framework for damage identification of steel truss bridges under joint uncertainties[J]. Advances in Civil Engineering,2013,2013: 307171. doi: 10.1155/2013/307171.
    [59] WANG Jia, Katafygiotis L S. Reliability-based optimal design of linear structures subjected to stochastic excitations[J]. Structural Safety,2014,47(2): 29-38.
    [60] Beck J L, Zuev K M. Asymptotically independent Markov sampling: a new Markov chain Monte Carlo scheme for Bayesian inference[J]. International Journal for Uncertainty Quantification,2013,3(5): 445-474.
    [61] CHEUNG Sai-hung, Beck J L. Bayesian model updating using hybrid Monte Carlo simulation with application to structural dynamic models with many uncertain parameters[J]. Journal of Engineering Mechanics,2009,135(4): 243-255.
    [62] Green P L. Bayesian system identification of a nonlinear dynamical system using a novel variant of simulated annealing[J]. Mechanical Systems & Signal Processing,2015,52/53: 133-146.
    [63] Green P L, Cross E J, Worden K. Bayesian system identification of dynamical systems using highly informative training data[J].Mechanical Systems & Signal Processing,2015,56/57: 109-122.
    [64] Marin J M, Pudlo P, Robert C P, et al. Approximate Bayesian computational methods[J]. Statistics & Computing,2012,22(6): 1167-1180.
    [65] Chiachio M, Beck J L, Chiachio J, et al. Approximate Bayesian computation by subset simulation[J]. SIAM Journal on Scientific Computing,2014,36(3): A1339-A1338.
    [66] Vakilzadeh M K, Huang Y, Beck J L, et al. Approximate Bayesian computation by subset simulation using hierarchical state-space models[J]. Mechanical Systems & Signal Processing,2017,84(B): 2-20.
    [67] AU Siu-kui, Beck J L. Estimation of small failure probabilities in high dimensions by subset simulation[J]. Probabilistic Engineering Mechanics,2001,16(4): 263-277.
    [68] Straub D, Papaioannou I. Bayesian updating with structural reliability methods[J]. Journal of Engineering Mechanics,2014,141(3): 04014134.
    [69] DiazDelaO F A, Garbuno-Inigo A, Au S K, et al. Bayesian updating and model class selection with subset simulation[Z]. arXiv preprint arXiv: 1510.06989, 2015.
    [70] LAM Heung-fai, YANG Jia-hua, AU Siu-kui. Bayesian model updating of a coupled-slab system using field test data utilizing an enhanced Markov chain Monte Carlo simulation algorithm[J]. Engineering Structures,2015,102: 144-155.
    [71] SUN Hao, Büyükztürk O. Probabilistic updating of building models using incomplete modal data[J]. Mechanical Systems and Signal Processing,2016,75: 27-40.
    [72] ZHANG Jian, WAN Chun-feng, Sato T. Advanced Markov chain Monte Carlo approach for finite element calibration under uncertainty[J]. Computer-Aided Civil and Infrastructure Engineering,2013,28(7): 522-530.
    [73] Simoen E, De Roeck G, Lombaert G. Dealing with uncertainty in model updating for damage assessment: a review[J]. Mechanical Systems and Signal Processing,2015,56/57: 123-149.
    [74] Collins J D, Hart G C, Haselman T K, et al. Statistical identification of structures[J]. Aiaa Journal,1973,12(2): 185-190.
    [75] Sohn H, Law K H. A Bayesian probabilistic damage detection using load-dependent Ritz vectors[C]// Proceedings of the 16th International Modal Analysis Conference.Santa Barbara, California : Society for Experimental Mechanics, Inc,1998: 374-380.
    [76] Sohn H, Law K H. Bayesian probabilistic damage detection of a reinforced-concrete bridge column[J]. Earthquake Engineering & Structural Dynamics,2000,29(8): 1131-1152.
    [77] Vanik M W. A Bayesian probabilistic approach to structural health monitoring: technical report EERL 97-07[R]. Earthquake Engineering Research Laboratory, California Institute of Technology, Pasadena, CA, 1997.
    [78] YUEN Ka-veng, AU Siu-kui, Beck J L. Two-stage structural health monitoring approach for phase I benchmark studies[J]. Journal of Engineering Mechanics,2004,130(1):16-33.
    [79] YUEN Ka-veng, Katafygiotis L S. Model updating using response measurements without knowledge of the input spectrum[J]. Earthquake Engineering and Structural Dynamics,2005,34(2): 167-187.
    [80] YUEN Ka-veng, Katafygiotis L S. Substructure identification and health monitoring using response measurement only[J]. Computer-Aided Civil and Infrastructure Engineering,2006,21(4): 280-291.
    [81] YAN Wang-ji, Katafygiotis L S. Application of transmissibility matrix and random matrix to Bayesian system identification with response measurements only[J]. Smart Materials and Structures,2016,25(10): 105017.
    [82] Ebrahimian H, Astroza R, Conte J P, et al. Nonlinear finite element model updating for damage identification of civil structures using batch Bayesian estimation[J]. Mechanical Systems & Signal Processing,2017,84(B): 194-222.
    [83] 易伟建, 周云, 李浩. 基于贝叶斯统计推断的框架结构损伤诊断研究[J]. 工程力学, 2009,26(5): 121-129.(YI Wei-jian, ZHOU Yun, LI Hao. Damage assessment research on frame structure based on Bayesian statistical inference[J]. Engineering Mechanics,2009,26(5): 121-129.(in Chinese) )
    [84] Lam H F, Yin T. Statistical detection of multiple cracks on thin plates utilizing dynamic response[J]. Engineering Structures,2010,32(10): 3145-3152.
    [85] Lam H F, Lee Y Y, Sun H Y, et al. Application of the spatial wavelet transform and Bayesian approach to the crack detection of a partially obstructed beam[J]. Thin-Walled Structures,2005,43(1): 1-21.
    [86] Lam H F, Ng C T, Veidt M. Experimental characterization of multiple cracks in a cantilever beam utilizing transient vibration data following a probabilistic approach[J]. Journal of Sound and Vibration,2007,305(1): 34-49.
    [87] Lam H F, Wong M T, Yang Y B. A feasibility study on railway ballast damage detection utilizing measured vibration of in situ concrete sleeper[J]. Engineering Structures,2012,45: 284-298.
    [88] Ng C T, Veidt M, Lam H F. Guided wave damage characterisation in beams utilising probabilistic optimisation[J]. Engineering Structures,2009,31(12): 2842-2850.
    [89] Flynn E B, Todd M D, Wilcox P D, et al. Maximum-likelihood estimation of damage location in guided-wave structural health monitoring[J]. Proceedings: Mathematical, Physical and Engineering Sciences,2011,467(2133): 2575-2596.
    [90] YUEN Ka-veng. Recent developments of Bayesian model class selection and applications in civil engineering[J]. Structural Safety,2010,32(5): 338-346.
    [91] Beck J L, YUEN Ka-veng. Model selection using response measurements: Bayesian probabilistic approach[J]. Journal of Engineering Mechanics,2004,130(2): 192-203.
    [92] CHEUNG Sai-hung, Beck J L. Calculation of posterior probabilities for Bayesian model class assessment and averaging from posterior samples based on dynamic system data[J]. Computer-Aided Civil and Infrastructure Engineering,2010,25(5): 304-321.
    [93] Papadimitriou C. Pareto optimal sensor locations for structural identification[J]. Computer Methods in Applied Mechanics and Engineering,2005,194(12): 1655-1673.
    [94] YUEN Ka-veng, KUOK Sin-chi. Efficient Bayesian sensor placement algorithm for structural identification: a general approach for multi-type sensory systems[J]. Earthquake Engineering & Structural Dynamics,2015,44(5): 757-774.
    [95] SUN Hao, FENG Dong-ming, LIU Yang, et al. Statistical regularization for identification of structural parameters and external loadings using state space models[J]. Computer-Aided Civil and Infrastructure Engineering,2015,30(11): 843-858.
    [96] Simoen E, Papadimitriou C, Lombaert G. On prediction error correlation in Bayesian model updating[J]. Journal of Sound and Vibration,2013,332(18): 4136-4152.
  • 加载中
计量
  • 文章访问数:  2198
  • HTML全文浏览量:  303
  • PDF下载量:  1030
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-11
  • 修回日期:  2016-12-10
  • 刊出日期:  2017-01-15

目录

    /

    返回文章
    返回