留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

移动荷载作用下黏弹性地基Timoshenko梁振动响应对比分析

黄强 刘干斌 律清 黄宏伟 郑荣跃

黄强, 刘干斌, 律清, 黄宏伟, 郑荣跃. 移动荷载作用下黏弹性地基Timoshenko梁振动响应对比分析[J]. 应用数学和力学, 2020, 41(7): 735-746. doi: 10.21656/1000-0887.400235
引用本文: 黄强, 刘干斌, 律清, 黄宏伟, 郑荣跃. 移动荷载作用下黏弹性地基Timoshenko梁振动响应对比分析[J]. 应用数学和力学, 2020, 41(7): 735-746. doi: 10.21656/1000-0887.400235
HUANG Qiang, LIU Ganbin, Lü Qing, HUANG Hongwei, ZHENG Rongyue. Comparative Analysis of Dynamic Responses of Timoshenko Beams on Visco-Elastic Foundations Under Moving Loads[J]. Applied Mathematics and Mechanics, 2020, 41(7): 735-746. doi: 10.21656/1000-0887.400235
Citation: HUANG Qiang, LIU Ganbin, Lü Qing, HUANG Hongwei, ZHENG Rongyue. Comparative Analysis of Dynamic Responses of Timoshenko Beams on Visco-Elastic Foundations Under Moving Loads[J]. Applied Mathematics and Mechanics, 2020, 41(7): 735-746. doi: 10.21656/1000-0887.400235

移动荷载作用下黏弹性地基Timoshenko梁振动响应对比分析

doi: 10.21656/1000-0887.400235
基金项目: 国家自然科学基金(面上项目)(51778303);国家自然科学基金(重点项目)(51538009);宁波市自然科学基金(2019A610399)
详细信息
    作者简介:

    黄强(1987—),男,讲师,博士(E-mail: qianghuang1987@163.com);刘干斌(1976—),男,教授,博士(通讯作者. E-mail: liuganbin@nbu.edu.cn).

  • 中图分类号: U213.2+1

Comparative Analysis of Dynamic Responses of Timoshenko Beams on Visco-Elastic Foundations Under Moving Loads

Funds: The National Natural Science Foundation of China(General Program)(51778303); The National Natural Science Foundation of China(Key Program)(51538009)
  • 摘要: 基于Fourier变换方法,对移动荷载作用下三维、二维和一维轨道地基模型的振动响应特征进行了研究,将轨道视为Timoshenko梁,比较了不同速度和地基厚度下各计算模型之间的响应差异.研究结果表明:三维模型存在一个地基等效刚度,为波数和频率的函数.二维和三维模型的临界速度较为接近,但比一维地基梁模型要小得多.荷载速度小于地基临界速度时,三维模型的梁挠度幅值最小,二维模型次之,一维模型梁挠度最大.当荷载速度达到或超过临界速度时,二维模型的梁挠度幅值变得最大,此时三者的挠度时程曲线存在明显差别.二维和三维模型的地层水平位移幅值先随地基深度增加而增大,在某一深度达到最大值后随深度增加逐渐减小,竖向位移幅值则随深度的增加逐渐减小.
  • [1] KRYLOV V V, DAWSON A R, HEELIS M E, et al. Rail movement and ground waves caused by high-speed trains approaching track-soil critical velocities[J]. Journal of Rail and Rapid Transit,2000,214(2): 107-116.
    [2] BIAN X C, CHENG C, JIANG J Q, et al. Numerical analysis of soil vibrations due to trains moving at critical speed[J]. Acta Geotechnica,2016,11(2): 281-294.
    [3] KENNEY J T. Steady state vibrations of beam on elastic foundation for moving load[J]. Journal of Applied Mechanics,1954,21(4): 359-364.
    [4] 杨燕, 丁虎, 陈立群. 车路耦合非线性振动高阶Galerkin截断研究[J]. 应用数学和力学, 2013,34(9): 881-890.(YANG Yan, DING Hu, CHEN Liqun. Nonlinear vibration of vehicle-pavement coupled system based on high-order Galerkin truncation[J]. Applied Mathematics and Mechanics,2013,34(9): 881-890.(in Chinese))
    [5] 陈启勇, 胡少伟, 张子明. 基于声子晶体理论的弹性地基梁的振动特性研究[J]. 应用数学和力学, 2014,35(1): 29-38.(CHEN Qiyong, HU Shaowei, ZHANG Ziming. Research on the vibration property of the beam on elastic foundation based on the PCs theory[J]. Applied Mathematics and Mechanics,2014,35(1): 29-38.(in Chinese))
    [6] METRIKINE A V, VROUWENVELDER A C M. Surface ground vibration due to a moving train in a tunnel: two-dimensional model[J]. Journal of Sound and Vibration,2000,234(1): 43-66.
    [7] ZHOU B, XIE X Y, YANG Y B. Simulation of wave propagation of floating slab track-tunnel-soil system by a 2D theoretical model[J]. International Journal of Structural Stability and Dynamics,2014,14(1): 1350051.
    [8] METRIKINE A V, KOPP K. Steady-state vibrations of an elastic beam on avisco-elastic layer under moving load[J]. Archive of Applied Mechanics,2000,70: 399-408.
    [9] 王常晶, 陈云敏. 移动荷载作用下弹性半空间Timoshenko梁的临界速度[J]. 振动工程学报, 2006,19(1): 139-144.(WANG Changjing, CHEN Yunmin. Critical velocities of Timoshenko beam on an elastic half-space under a moving load[J]. Journal of Vibration Engineering,2006,19(1): 139-144.(in Chinese))
    [10] ANDERSEN L, JONES C J C. Coupled boundary and finite analysis of vibration from railway tunnels: a comparison of two-and three-dimensional models[J]. Journal of Sound and Vibration,2006,293(3/5): 611-625.
    [11] XU Q Y, XIAO Z C, LIU T, et al. Comparison of 2D and 3D prediction models for environmental vibration induced by underground railway with two types of tracks[J]. Computers and Geotechnics,2015,68: 169-183.
    [12] 陈镕, 万春风, 薛松涛, 等. Timoshenko梁运动方程的修正及其影响[J]. 同济大学学报(自然科学版), 2005,33(6): 711-715.(CHEN Rong, WAN Chunfeng, XUE Songtao, et al. Modification of motion equation of Timoshenko beam and its effect[J]. Journal of Tongji University(Natural Science),2005,33(6): 711-715.(in Chinese))
    [13] JIN B. Dynamic displacements of an infinite beam on a poroelastic half space due to a moving oscillating load[J]. Archive of Applied Mechanics,2004,74(3): 277-287.
    [14] STEENBERG M, METRIKINE A V. The effect of the interface conditions on the dynamic response of a beam on a half-space to a moving load[J]. European Journal of Mechanics A: Solids,2007,26(1): 33-54.
    [15] HORVATH J S. New subgrade model applied to mat foundations[J]. Journal of Geotechnical Engineering,1983,109(12): 1567-1587.
    [16] 黄强, 黄宏伟, 张冬梅, 等. 移动简谐荷载作用下Kerr地基梁的稳态响应研究[J]. 振动与冲击, 2018,37(1): 14-21.(HUANG Qiang, HUANG Hongwei, ZHANG Dongmei, et al. Steady-state response of an infinite Euler-Bernoulli beam on Kerr foundation subjected to a moving oscillating load[J]. Journal of Shock and Vibration,2018,37(1): 14-21.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1162
  • HTML全文浏览量:  241
  • PDF下载量:  281
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-06
  • 修回日期:  2019-10-16
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回