留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有初值间断的Burgers方程奇摄动解

包立平 胡玉博 吴立群

包立平, 胡玉博, 吴立群. 具有初值间断的Burgers方程奇摄动解[J]. 应用数学和力学, 2020, 41(7): 807-816. doi: 10.21656/1000-0887.400270
引用本文: 包立平, 胡玉博, 吴立群. 具有初值间断的Burgers方程奇摄动解[J]. 应用数学和力学, 2020, 41(7): 807-816. doi: 10.21656/1000-0887.400270
BAO Liping, HU Yubo, WU Liqun. Singularly Perturbed Solutions of Burgers Equations With Initial Value Discontinuities[J]. Applied Mathematics and Mechanics, 2020, 41(7): 807-816. doi: 10.21656/1000-0887.400270
Citation: BAO Liping, HU Yubo, WU Liqun. Singularly Perturbed Solutions of Burgers Equations With Initial Value Discontinuities[J]. Applied Mathematics and Mechanics, 2020, 41(7): 807-816. doi: 10.21656/1000-0887.400270

具有初值间断的Burgers方程奇摄动解

doi: 10.21656/1000-0887.400270
基金项目: 国家自然科学基金(51775154);浙江省重点自然科学基金(LZ15E050004)
详细信息
    作者简介:

    包立平(1962—),男,副教授,博士(E-mail: baolp@hdu.edu.cn);胡玉博(1992—),女,硕士生(通讯作者. E-mail: 1195595626@qq.com).

  • 中图分类号: O175.29

Singularly Perturbed Solutions of Burgers Equations With Initial Value Discontinuities

Funds: The National Natural Science Foundation of China(51775154)
  • 摘要: 讨论激光等离子体产生的波模型,形成了具有初值间断的Burgers方程Riemann问题,通过奇摄动展开的方法得到了具有间断初值的Burgers方程相应形式的奇摄动渐近解,渐近解包含外解和内部层矫正两部分.由于初值条件是常数,波在传播的过程中产生特征边界,矫正项为抛物边界即抛物型特征边界.对外解在特征边界上进行内部层矫正,利用HopfCole变换、Fourier变换、极值原理证明了渐近解的存在性、唯一性,得到了形式渐近展开式.证明了形式渐近解的一致有效性.
  • [1] SEN A, RAJA SEKHAR T. Delta shock wave as self-similar viscosity limit for a strictly hyperbolic system of conservation laws[J]. Journal of Mathematical Physics,2019,60(5): 051510.
    [2] GALAKTIONOV V A. On self-similar collapse of discontinuous data for thin film equations with doubly degenerate mobility[R/OL]. 2009. [2019-09-12]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.243.8638& rep=rep1& type=pdf.
    [3] 瞿霞. 流体力学中Euler方程组的Riemann问题[D]. 硕士学位论文. 上海: 上海师范大学, 2019.(QU Xia. Riemann problem of Euler equations in fluid mechanics[D]. Master Thesis. Shanghai: Shanghai Normal University, 2019.(in Chinese))
    [4] SHEN C. The Riemann problem for the pressureless Euler system with the Coulomb-like friction term[J]. IMA Journal of Applied Mathematics,2015,81(1): 76-99.
    [5] WANG L. The Riemann problem with delta data for zero-pressure gas dynamics[J]. Chinese Annals of Mathematics(Series B),2016,37(3): 441-450.
    [6] ZHANG Y H, PAN R H, TAN Z. Zero dissipation limit to a Riemann solution consisting of two shock waves for the 1D compressible isentropic Navier-Stokes equations[J]. Science China: Mathematics,2013,56(11): 2205-2232.
    [7] HUANG F, WANG Y, YANG T. Vanishing viscosity limit of the compressible Navier-Stokes equations for solutions to a Riemann problem[J]. Archive for Rational Mechanics and Analysis,2012,203(2): 379-413.
    [8] CHEN Z, XIONG L, MENG Y J. Convergence to the superposition of rarefaction waves and contact discontinuity for the 1-D compressible Navier-Stokes-Korteweg system[J]. Journal of Mathematical Analysis and Applications,2014,412(2): 646-663.
    [9] CHEN Z Z, CHAI X J, WANG W J. Convergence rate of solutions to strong contact discontinuity for the one-dimensional compressible radiation hydrodynamics model[J]. Acta Mathematica Scientia,2016,〖STHZ〗 36(1): 265-282.
    [10] YOSHIA Z. Singular perturbation and scale hierarchy in plasma flows[C]// Autumn College on Plasma Physics: Long-Lived Structures and Self Organization in Plasmas . Trieste, Italy, 2003.
    [11] FERDOUSI M, YASMIN S, ASHRAF S, et al. Cylindrical and spherical ion-acoustic shock waves in nonextensive electron-positron-ion plasma[J]. IEEE Transactions on Plasma Science,2015,43(2): 643-649.
    [12] YANG X J, GAO F, SRIVASTAVA H M. Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations[J]. Computers & Mathematics With Applications,2017,73(2): 203-210.
    [13] SEADAWY A R. Ion acoustic solitary wave solutions of two-dimensional nonlinear Kadomtsev-Petviashvili-Burgers equation in quantum plasma[J]. Mathematical Methods in the Applied Sciences,2017,40(5): 1598-1607.
    [14] FANG B, TANG P, WANG Y G. The Riemann problem of the Burgers equation with a discontinuous source term[J]. Journal of Mathematical Analysis and Applications,2012,395(1): 307-335.
    [15] 拉奥 C S, 亚达夫 M K. 非齐次Burgers方程解的渐近性行为[J]. 应用数学和力学, 2010,31(9): 1133-1139. (RAO C S, YADAV M K. Asymptotic behavior of solutions to nonhomogeneous Burgers equation[J]. Applied Mathematics and Mechanics,2010,31(9): 1133-1139.(in Chinese))
    [16] 伍卓群, 尹景学, 王春明. 椭圆与抛物型方程引论[M]. 北京: 科学出版社, 2003.(WU Zhuoqun, YIN Jingxue, WANG Chunming. Introduction to Elliptic and Parabolic Equations [M]. Beijing: Science Press, 2003.(in Chinese))
  • 加载中
计量
  • 文章访问数:  1230
  • HTML全文浏览量:  243
  • PDF下载量:  295
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-12
  • 修回日期:  2019-11-04
  • 刊出日期:  2020-07-01

目录

    /

    返回文章
    返回