留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于观测器的非严格反馈时滞非线性系统的神经网络自适应控制

刘祥 童东兵 陈巧玉

刘祥, 童东兵, 陈巧玉. 基于观测器的非严格反馈时滞非线性系统的神经网络自适应控制[J]. 应用数学和力学, 2021, 42(6): 586-594. doi: 10.21656/1000-0887.410325
引用本文: 刘祥, 童东兵, 陈巧玉. 基于观测器的非严格反馈时滞非线性系统的神经网络自适应控制[J]. 应用数学和力学, 2021, 42(6): 586-594. doi: 10.21656/1000-0887.410325
LIU Xiang, TONG Dongbing, CHEN Qiaoyu. Observer-Based Adaptive Neural Network Control for Nonstrict-Feedback Nonlinear Systems With Time Delays[J]. Applied Mathematics and Mechanics, 2021, 42(6): 586-594. doi: 10.21656/1000-0887.410325
Citation: LIU Xiang, TONG Dongbing, CHEN Qiaoyu. Observer-Based Adaptive Neural Network Control for Nonstrict-Feedback Nonlinear Systems With Time Delays[J]. Applied Mathematics and Mechanics, 2021, 42(6): 586-594. doi: 10.21656/1000-0887.410325

基于观测器的非严格反馈时滞非线性系统的神经网络自适应控制

doi: 10.21656/1000-0887.410325
基金项目: 

上海市自然科学基金(20ZR1422400)

国家自然科学基金(61673257);中国博士后科学基金(2019M661322)

详细信息
    作者简介:

    刘祥(1996—),男,硕士生(E-mail: lxhycb1109@163.com);童东兵(1979—),男,副教授,博士(通讯作者. E-mail: tongdb@sues.edu.cn).

    通讯作者:

    童东兵(1979—),男,副教授,博士(通讯作者. E-mail: tongdb@sues.edu.cn).

  • 中图分类号: O175.13

Observer-Based Adaptive Neural Network Control for Nonstrict-Feedback Nonlinear Systems With Time Delays

Funds: 

The National Natural Science Foundation of China(61673257)

  • 摘要: 针对一类非严格反馈的时滞非线性系统, 研究了一类基于观测器的自适应神经网络控制问题.针对系统中存在未知状态变量的问题, 设计了一个状态观测器.利用反步法和径向基神经网络的逼近特性, 提出了一种自适应神经网络输出反馈控制方法.所设计的控制器保证了闭环系统中所有信号的半全局一致有界性.最后, 通过仿真验证了所提控制方法的有效性.
  • [2]POLYCARPOU M M, MEARS M J. Stable adaptive tracking of uncertain systems using nonlinearly parametrized on-line approximators[J]. International Journal of Control,1998,70(3): 363-384.
    SASTRY S S, ISIDORI A. Adaptive control of linearizable systems[J]. IEEE Transactions on Automatic Control,1989,34(11): 1123-1131.
    [3]KANELLAKOPOULOS I, KOKOTOVIC P V, MORSE A S. Systematic design of adaptive controllers for feedback linearizable systems[J]. IEEE Transactions on Automatic Control,1991,36(3): 1241-1253.
    [4]HE W, CHEN Y, YIN Z. Adaptive neural network control of an uncertain robot with full-state constraints[J]. IEEE Transactions on Cybernetics,2016,46(3): 620-629.
    [5]LI Y, TONG S, LI T. Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation[J]. IEEE Transactions on Cybernetics,2015,45(10): 2299-2308.
    [6]SUN W, GAO H, KAYNAK O. Adaptive backstepping control for active suspension systems with hard constraints[J]. IEEE/ASME Transactions on Mechatronics,2013,18(3): 1072-1079.
    [7]ZHOU Z, TONG D, CHEN Q, et al. Adaptive NN control for nonlinear systems with uncertainty based on dynamic surface control[J]. Neurocomputing,2021,421: 161-172.
    [8]WANG A, LIU L, QIU J, et al. Event-triggered robust adaptive fuzzy control for a class of nonlinear systems[J]. IEEE Transactions on Fuzzy Systems,2018,27(8): 1648-1658.
    [9]WU C, LIU J, XIONG Y, et al. Observer-based adaptive fault-tolerant tracking control of nonlinear nonstrict-feedback systems[J]. IEEE Transactions on Neural Networks and Learning Systems,2018,29(7): 3022-3033.
    [10]CHEN C L P, WEN G X, LIU Y J, et al. Observer-based adaptive backstepping consensus tracking control for high-order nonlinear semi-strict-feedback multiagent systems[J]. IEEE Transactions on Cybernetics,2016,46(7): 1591-1601.
    [11]NIU B, LI H, ZHANG Z, et al. Adaptive neural-network-based dynamic surface control for stochastic interconnected nonlinear nonstrict-feedback systems with dead zone[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems,2019,49(7): 1386-1398.
    [12]ZHAO X, WANG X, ZONG G, et al. Fuzzy-approximation-based adaptive output-feedback control for uncertain nonsmooth nonlinear systems[J]. IEEE Transactions on Fuzzy Systems,2018,26(6): 3847-3859.
    [13]佟英浩, 童东兵, 陈巧玉, 等. 事件触发驱动的非线性系统有限时间状态估计器设计[J]. 应用数学和力学, 2020,41(6): 669-678.(TONG Yinghao, TONG Dongbing, CHEN Qiaoyu, et al. Design of a finite-time state estimator for nonlinear systems under event-triggered control[J]. Applied Mathematics and Mechanics,2020,41(6): 669-678.(in Chinese))
    [14]TONG S C, LI Y M, LIU Y J. Observer-based adaptive neural networks control for large-scale interconnected systems with nonconstant control gains[J]. IEEE Transactions on Neural Networks and Learning Systems,2021,32(4): 1575-1585.
    [15]李刚, 孟增. 基于RBF神经网络模型的结构可靠度优化方法[J]. 应用数学和力学, 2014,35(11): 1271-1279.(LI Gang, MENG Zeng. Reliability-based design optimization with the RBF neural network model[J]. Applied Mathematics and Mechanics,2014,35(11): 1271-1279.(in Chinese))
    [16]CHEN B, ZHANG H, LIN C. Observer-based adaptive neural network control for nonlinear systems in nonstrict-feedback form[J]. IEEE Transactions on Neural Networks and Learning Systems,2016,27(1): 89-98.
    [17]CHEN W, JIAO L, LI J, et al. Adaptive NN backstepping output-feedback control for stochastic nonlinear strict-feedback systems with time-varying delays[J]. IEEE Transactions on Systems, Man, and Cybernetics (Part B): Cybernetics,2010,40(3): 939-950.
  • 加载中
计量
  • 文章访问数:  962
  • HTML全文浏览量:  270
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-23
  • 修回日期:  2020-12-04

目录

    /

    返回文章
    返回