留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非光滑多目标半无限规划问题的混合型对偶

刘娟 龙宪军

刘娟, 龙宪军. 非光滑多目标半无限规划问题的混合型对偶[J]. 应用数学和力学, 2021, 42(6): 595-601. doi: 10.21656/1000-0887.410342
引用本文: 刘娟, 龙宪军. 非光滑多目标半无限规划问题的混合型对偶[J]. 应用数学和力学, 2021, 42(6): 595-601. doi: 10.21656/1000-0887.410342
LIU Juan, LONG Xianjun. Mixed Type Duality for Nonsmooth Multiobjective Semi-Infinite Programming Problems[J]. Applied Mathematics and Mechanics, 2021, 42(6): 595-601. doi: 10.21656/1000-0887.410342
Citation: LIU Juan, LONG Xianjun. Mixed Type Duality for Nonsmooth Multiobjective Semi-Infinite Programming Problems[J]. Applied Mathematics and Mechanics, 2021, 42(6): 595-601. doi: 10.21656/1000-0887.410342

非光滑多目标半无限规划问题的混合型对偶

doi: 10.21656/1000-0887.410342
基金项目: 

重庆市教育委员会科学技术研究重点项目(KJZD-K201900801);重庆市巴渝学者特聘教授专项资助

重庆市基础与前沿研究计划项目(cstc2018jcyjAX0119;cstc2020jcyj-msxmX0053)

国家自然科学基金(面上项目)(11471059)

详细信息
    作者简介:

    刘娟(1996—),女,硕士生(E-mail: 1016661324@qq.com);龙宪军(1980—),男,教授,博士(通讯作者. E-mail: xianjunlong@ctbu.edu.cn).

    通讯作者:

    龙宪军(1980—),男,教授,博士(通讯作者. E-mail: xianjunlong@ctbu.edu.cn).

  • 中图分类号: O221.2

Mixed Type Duality for Nonsmooth Multiobjective Semi-Infinite Programming Problems

Funds: 

The National Natural Science Foundation of China(11471059)

  • 摘要: 该文研究了非光滑多目标半无限规划问题的混合型对偶.首先,利用Lagrange函数介绍了非光滑多目标半无限规划混合型对偶的弱有效解和有效解的定义.其次,利用Dini-伪凸性建立了非光滑多目标半无限规划混合型对偶的弱对偶定理、强对偶定理和逆对偶定理.该文所得结果推广了已有文献中的主要结果.
  • GOBERNA M A, LPEZ M A. Linear Semi-Infinite Optimization[M]. Chichester: Wiley, 1998.
    [2]LONG X J, PENG Z Y, WANG X F. Stable Farkas lemmas and duality for nonconvex composite semi-infinite programming problems[J]. Pacific Journal of Optimization,2019,15(2): 295-315.
    [3]LONG X J, LIU J, HUANG N J. Characterizing the solution set for nonconvex semi-infinite programs involving tangential subdifferentials[J]. Numerical Functional Analysis and Optimization,2021,42(3): 279-297.
    [4]KIM D S, SON T Q. Characterizations of solutions sets of a class of nonconvex semi-infinite programming problems[J]. Journal of Nonlinear and Convex Analysis,2011,12(3): 429-440.
    [5]PENG Z Y, WANG X F, YANG X M. Connectedness of approximate efficient solutions for generalized semi-infinite vector optimization problems[J]. Set-Valued and Variational Analysis,2019,27(1): 103-118.
    [6]PENG Z Y, PENG J W, LONG X J, et al. On the stability of solutions for semi-infinite vector optimization problems[J]. Journal of Global Optimization,2018,70(1): 55-69.
    [7]杨玉红, 李飞. 非光滑半无限多目标优化问题的最优性充分条件[J]. 应用数学和力学, 2017,38(5): 526-538.(YANG Yuhong, LI Fei. Sufficient optimality conditions for nonsmooth semi-infinite multiobjective optimization problems[J]. Applied Mathematics and Mechanics,2017,38(5): 526-538.(in Chinese))
    [8]GULATI T R, ISLAM M A. Sufficiency and duality in multiobjective programming involving generalized F-convex functions[J]. Journal of Mathematical Analysis and Applications,1994,183(1): 181-195.
    [9]AHMAD I. Sufficiency and duality in multiobjective programming with generalized (F,ρ)-convexity[J]. Journal of Applied Analysis,2005,11(1): 19-33.
    [10]TUNG L T. Karush-Kuhn-Tucker optimality conditions and duality for convex semi-infinite programming with multiple interval-valued objective functions[J]. Numerical Functional Analysis and Optimization,2020,62(1): 67-91.
    [11]SON T Q, KIM D S. ε-mixed type duality for nonconvex multiobjective programs with an infinite number of constraints[J]. Journal of Global Optimization,2013,57(2): 447-465.
    [12]MARTINEZ-LEGAZ J E. Optimality conditions for pseudo-convex minimization over convex sets defined by tangentially convex constraints[J]. Optimization Letter,2015,9(5): 1017-1023.
    [13]LUC D T. Theory of Vector Optimization[M]. Berlin: Springer, 1989: 37-61.
    [14]TUNG L T. Strong Karush-Kuhn-Tucker optimality conditions for multiobjective semi-infinite programming via tangential subdifferential[J]. RAIRO-Operations Research,2018,52(4/5): 1019-1041.
    [15]赵丹, 孙祥凯. 非凸多目标优化模型的一类鲁棒逼近最优性条件[J]. 应用数学和力学, 2019,40(6): 694-700.(ZHAO Dan, SUN Xiangkai. Some robust approximate optimality conditions for nonconvex multi-objective optimization problems[J]. Applied Mathematics and Mechanics,2019,40(6): 694-700.(in Chinese))
    [16]FAKHAR M, MOHAMMAD M R, ZAFARANI J. On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization[J]. European Journal of Operational Research,2018, 265(1): 39-48.
  • 加载中
计量
  • 文章访问数:  707
  • HTML全文浏览量:  136
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-11
  • 修回日期:  2021-05-05

目录

    /

    返回文章
    返回