GOBERNA M A, LPEZ M A. Linear Semi-Infinite Optimization[M]. Chichester: Wiley, 1998.
|
[2]LONG X J, PENG Z Y, WANG X F. Stable Farkas lemmas and duality for nonconvex composite semi-infinite programming problems[J]. Pacific Journal of Optimization,2019,15(2): 295-315.
|
[3]LONG X J, LIU J, HUANG N J. Characterizing the solution set for nonconvex semi-infinite programs involving tangential subdifferentials[J]. Numerical Functional Analysis and Optimization,2021,42(3): 279-297.
|
[4]KIM D S, SON T Q. Characterizations of solutions sets of a class of nonconvex semi-infinite programming problems[J]. Journal of Nonlinear and Convex Analysis,2011,12(3): 429-440.
|
[5]PENG Z Y, WANG X F, YANG X M. Connectedness of approximate efficient solutions for generalized semi-infinite vector optimization problems[J]. Set-Valued and Variational Analysis,2019,27(1): 103-118.
|
[6]PENG Z Y, PENG J W, LONG X J, et al. On the stability of solutions for semi-infinite vector optimization problems[J]. Journal of Global Optimization,2018,70(1): 55-69.
|
[7]杨玉红, 李飞. 非光滑半无限多目标优化问题的最优性充分条件[J]. 应用数学和力学, 2017,38(5): 526-538.(YANG Yuhong, LI Fei. Sufficient optimality conditions for nonsmooth semi-infinite multiobjective optimization problems[J]. Applied Mathematics and Mechanics,2017,38(5): 526-538.(in Chinese))
|
[8]GULATI T R, ISLAM M A. Sufficiency and duality in multiobjective programming involving generalized F-convex functions[J]. Journal of Mathematical Analysis and Applications,1994,183(1): 181-195.
|
[9]AHMAD I. Sufficiency and duality in multiobjective programming with generalized (F,ρ)-convexity[J]. Journal of Applied Analysis,2005,11(1): 19-33.
|
[10]TUNG L T. Karush-Kuhn-Tucker optimality conditions and duality for convex semi-infinite programming with multiple interval-valued objective functions[J]. Numerical Functional Analysis and Optimization,2020,62(1): 67-91.
|
[11]SON T Q, KIM D S. ε-mixed type duality for nonconvex multiobjective programs with an infinite number of constraints[J]. Journal of Global Optimization,2013,57(2): 447-465.
|
[12]MARTINEZ-LEGAZ J E. Optimality conditions for pseudo-convex minimization over convex sets defined by tangentially convex constraints[J]. Optimization Letter,2015,9(5): 1017-1023.
|
[13]LUC D T. Theory of Vector Optimization[M]. Berlin: Springer, 1989: 37-61.
|
[14]TUNG L T. Strong Karush-Kuhn-Tucker optimality conditions for multiobjective semi-infinite programming via tangential subdifferential[J]. RAIRO-Operations Research,2018,52(4/5): 1019-1041.
|
[15]赵丹, 孙祥凯. 非凸多目标优化模型的一类鲁棒逼近最优性条件[J]. 应用数学和力学, 2019,40(6): 694-700.(ZHAO Dan, SUN Xiangkai. Some robust approximate optimality conditions for nonconvex multi-objective optimization problems[J]. Applied Mathematics and Mechanics,2019,40(6): 694-700.(in Chinese))
|
[16]FAKHAR M, MOHAMMAD M R, ZAFARANI J. On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization[J]. European Journal of Operational Research,2018, 265(1): 39-48.
|