留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ANN的混凝土均匀化方法解析解

刘溢凡 马小敏 王志勇 王志华

刘溢凡, 马小敏, 王志勇, 王志华. 基于ANN的混凝土均匀化方法解析解[J]. 应用数学和力学, 2024, 45(5): 554-570. doi: 10.21656/1000-0887.440106
引用本文: 刘溢凡, 马小敏, 王志勇, 王志华. 基于ANN的混凝土均匀化方法解析解[J]. 应用数学和力学, 2024, 45(5): 554-570. doi: 10.21656/1000-0887.440106
LIU Yifan, MA Xiaomin, WANG Zhiyong, WANG Zhihua. Analytical Solution of the Concrete Homogenization Method Based on the ANN[J]. Applied Mathematics and Mechanics, 2024, 45(5): 554-570. doi: 10.21656/1000-0887.440106
Citation: LIU Yifan, MA Xiaomin, WANG Zhiyong, WANG Zhihua. Analytical Solution of the Concrete Homogenization Method Based on the ANN[J]. Applied Mathematics and Mechanics, 2024, 45(5): 554-570. doi: 10.21656/1000-0887.440106

基于ANN的混凝土均匀化方法解析解

doi: 10.21656/1000-0887.440106
基金项目: 

国家自然科学基金 12272257

国家自然科学基金 12202303

山西省基础研究计划 202203021211169

详细信息
    作者简介:

    刘溢凡(1999—),男,硕士生(E-mail: liuyifan0019@link.tyut.edu.cn)

    通讯作者:

    王志勇(1982—),男,副教授,博士,硕士生导师(通讯作者. E-mail: wangzhiyong@tyut.edu.cn)

  • 中图分类号: TU37;TP39;O34

Analytical Solution of the Concrete Homogenization Method Based on the ANN

  • 摘要: 通过自定义人工神经网络(artificial neural network,ANN),借助其优秀的函数拟合功能,针对骨料/砂浆基质二相混凝土,求解间接均匀化理论中微分法的高度非线性耦合微分方程的解析解,得到了混凝土体积模量和剪切模量分别与骨料体积分数的函数关系,并与数值模拟的结果进行了对比. 结果表明,基于ANN的求解方法快速且具有更高的精度. 此外,通过解构ANN的方法给出了在细观力学参数不变的条件下由骨料体积分数、初始孔隙率直接计算骨料/砂浆基质/孔隙三相混凝土弹性模量的公式. 结果表明,对于不同骨料体积分数和初始孔隙率的混凝土样本,该公式均有较高的计算精度,同时避免了传统均匀化方法的复杂分析和大量假设,为复合材料均匀化方法研究提供了新思路.
  • 图  1  PYTHON绘制模型和有限元模型

    Figure  1.  The PYTHON drawing model and the finite element model

    图  2  部分不同骨料体积分数下混凝土细观模型样本

    Figure  2.  Some concrete meso-model samples with different aggregate volume fractions

    图  3  不同骨料体积分数下混凝土细观模型应力-应变曲线及有效性验证

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  The concrete meso-model stress-strain curves with different aggregate volume fractions and validity verification

    图  4  自定义ANN架构

    Figure  4.  The custom ANN architecture

    图  5  激活函数

    Figure  5.  The activation function

    图  6  训练过程的损失曲线

    Figure  6.  The loss curves of the training process

    图  7  ANN计算结果以及与其他方法对比

    Figure  7.  The ANN calculation results and the comparison with other methods

    图  8  不同骨料随机分布下的损伤和弹性模量

    Figure  8.  Damages and elastic moduli under different random distributions of aggregates

    图  9  有限元模型和PYTHON绘制模型

    Figure  9.  The finite element model and the PYTHON drawing model

    图  10  部分不同骨料体积分数和孔隙率下的混凝土细观模型样本

    Figure  10.  Some concrete meso-model samples with different aggregate volume fractions and porosity

    图  11  不同骨料体积分数和孔隙率下的混凝土细观模型应力-应变曲线

    Figure  11.  Some concrete meso-model stress-strain curves with different aggregate volume fractions and porosities

    图  12  BP神经网络解构流程

    Figure  12.  The deconstruction process of the BP neural network

    图  13  训练过程的损失曲线

    Figure  13.  The loss curves of the training process

    图  14  不同骨料体积分数下的弹性模量预测结果与数值模拟和试验对比

    Figure  14.  The prediction results of elastic moduli under different aggregate volume fractions compared with numerical simulation and experiment

    表  1  两种细观组分的力学参量

    Table  1.   Mechanical parameters of the 2 meso-components

    E/GPa υ fc/MPa Ψ/(°) η/% σb0/σc0
    aggregate 43 0.23 - - - -
    mortar 25 0.2 35 38 0.1 1.16
    下载: 导出CSV

    表  2  数据集中各混凝土样本的弹性模量

    Table  2.   The elastic modulus of each concrete sample in the dataset

    number 1 2 3 4 5 6 7
    E/GPa 28.80 28.89 29.10 29.21 29.31 29.51 29.64
    number 8 9 10 11 12 13 14
    E/GPa 29.74 29.95 30.06 30.36 30.47 30.68 30.81
    number 15 16 17 18 19 20 21
    E/GPa 30.93 31.15 31.26 31.41 31.59 31.73 31.85
    下载: 导出CSV

    表  3  试验环境的硬件和软件参数

    Table  3.   Hardware and software parameters of the experimental environment

    part parameter
    central processing unit Inter Core i7-11800H CPU @ 2.3 GHz
    memory DDR4 memory 8 GB
    graphics card NIVIDA GeForce RTX3060
    system Windows 10
    environment PYTHON 3.9.7 Tensorfolw 2.8.0 Keras 2.0.6 Numpy 1.22.2
    下载: 导出CSV
  • [1] 杜晨, 彭雄奇. 变厚度连续纤维增强复合材料铺层设计优化方法[J]. 应用数学和力学, 2022, 43(12): 1313-1323. doi: 10.21656/1000-0887.420410

    DU Chen, PENG Xiongqi. Lamination design optimization for continuous fiber reinforced composites of variable thicknesses[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1313-1323. (in Chinese) doi: 10.21656/1000-0887.420410
    [2] KUMAR R D, WAGH PH, EMANOIL L. A review on synthetic fibers for polymer matrix composites: performance, failure modes and applications[J]. Materials, 2022, 15(14): 1790.
    [3] 张雪琴, 马昆林, 龙广成, 等. 粗骨料形态特征表征参数及其与混凝土性能关系的研究进展[J]. 材料导报, 2023, 38(2): 22060263. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202402012.htm

    ZHANG Xueqin, MA Kunlin, LONG Guangcheng, et al. Research progress in characterization parameters of coarse aggregate morphology and its relationship with concrete properties[J]. Materials Reports, 2023, 38(2): 22060263. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202402012.htm
    [4] 陈海玉, 徐福卫. 细观等效理论预测再生混凝土宏观力学参数[J]. 应用数学和力学, 2022, 43(7): 772-782. doi: 10.21656/1000-0887.420079

    CHEN Haiyu, XU Fuwei. Prediction of the macroscopic mechanics properties of recycled aggregate concrete based on the mesoscopic equivalence theory[J]. Applied Mathematics and Mechanics, 2022, 43(7): 772-782. (in Chinese) doi: 10.21656/1000-0887.420079
    [5] WU L, HUANG D. Peridynamic modeling and simulations on concrete dynamic failure and penetration subjected to impact loadings[J]. Engineering Fracture Mechanics, 2022, 259: 108135. doi: 10.1016/j.engfracmech.2021.108135
    [6] 李向南, 左晓宝, 周广盼, 等. 混凝土多尺度应力响应方程及其数值模拟[J]. 力学学报, 2022, 54(11): 3113-3126. doi: 10.6052/0459-1879-22-269

    LI Xiangnan, ZUO Xiaobao, ZHOU Guangpan, et al. Equation and numerical simulation on multiscale stress response of concrete[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(11): 3113-3126. (in Chinese) doi: 10.6052/0459-1879-22-269
    [7] 孙伟, 包世诚, 张嘎. 基于近场动力学均匀化的混凝土防渗墙等效损伤模型[J]. 同济大学学报(自然科学版), 2022, 50(9): 1240-1250. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202209004.htm

    SUN Wei, BAO Shicheng, ZHANG Ga. An equivalent damage model of concrete cut-off wall based on homogenization of peridynamics[J]. Journal of Tongji University(Natural Science), 2022, 50(9): 1240-1250. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202209004.htm
    [8] 鞠晓喆, 朱加文, 梁利华, 等. 石墨烯纳米复合材料的降阶均匀化方法及其数值实现[J]. 复合材料学报, 2021, 38(12): 4362-4370. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202112038.htm

    JU Xiaozhe, ZHU Jiawen, LIANG Lihua, et al. Reduced order homogenization of graphene nanocomposites and its numerical implementation[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4362-4370. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202112038.htm
    [9] SUN Q, ASQARDOUST S, SARMAH A, et al. Elastoplastic analysis of AA7075-O aluminum sheet by hybrid micro-scale representative volume element modeling with really-distributed particles and in-situ SEM experimental testing[J]. Journal of Materials Science & Technology, 2022, 123(28): 201-221.
    [10] 邱伊健, 郑萍, 程香平, 等. 随机多尺度短切碳纤维复合结构模型中RVE尺寸效应和方向模量的均一化响应[J]. 兵工学报, 2022, 44(3): 702-717. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO202303007.htm

    QIU Yijian, ZHENG Ping, CHENG Xiangping, et al. RVE size effect and homogenization response of directional modulus in stochastic multi-scale chopped carbon fiber composite structure[J]. Acta Armamentarii, 2022, 44(3): 702-717. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO202303007.htm
    [11] LI R, YANG M, LIANG B. The homogenized transformation method for the calculation of stress intensity factor in cracked FGM structure[J]. International Journal of Computational Methods, 2021, 18(2): 2050014. doi: 10.1142/S0219876220500140
    [12] 梁文鹏, 周家作, 陈盼, 等. 基于均匀化理论的含水合物土弹塑性本构模型[J]. 岩土力学, 2021, 42(2): 481-490. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102020.htm

    LIANG Wenpeng, ZHOU Jiazuo, CHEN Pan, et al. An elastoplastic constitutive model of gas hydrate bearing sediments based on homogenization theory[J]. Rock and Soil Mechanics, 2021, 42(2): 481-490. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102020.htm
    [13] REZAKHANI R, ALNAGGAR M, CUSATIS G. Multiscale homogenization analysis of alkali-silica reaction (ASR) effect in concrete[J]. Engineering, 2019, 5(6): 1139-1154. doi: 10.1016/j.eng.2019.02.007
    [14] CHOU T W. A self-consistent approach to the elastic stiffness of short-fiber composites[J]. Journal of Composite Materials, 1980, 14(3): 178-188. doi: 10.1177/002199838001400301
    [15] 田十方, 李彪. 梯度优化物理信息神经网络(GOPINNs): 求解复杂非线性问题的深度学习方法[J/OL]. 物理学报[2023-04-13]. https://kns.cnki.net/kcms/detail//11.1958.O4.20230201.2155.004.html.

    TIAN Shifang, LI Biao. Gradient-optimized physical information neural networks (GOPINNs): deep learning methods for solving complex nonlinear problems[J/OL]. Acta Physica Sinica[2023-04-13]. https://kns.cnki.net/kcms/detail//11.1958.O4.20230201.2155.004.html. (in Chinese)
    [16] SHANG M, LI H, AHMAD A, et al. Predicting the mechanical properties of RCA-based concrete using supervised machine learning algorithms[J]. Materials, 2022, 15(2): 647. doi: 10.3390/ma15020647
    [17] HAN T, SIDDIQUE A, KHAYAT K, et al. An ensemble machine learning approach for prediction and optimization of modulus of elasticity of recycled aggregate concrete[J]. Construction and Building Materials, 2020, 244: 118271. doi: 10.1016/j.conbuildmat.2020.118271
    [18] LI X, LIU Z, CUI S, et al. Predicting the effective mechanical property of heterogeneous materials by image based modeling and deep learning[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 347: 735-753. doi: 10.1016/j.cma.2019.01.005
    [19] 查文舒, 李道伦, 沈陆航, 等. 基于神经网络的偏微分方程求解方法研究综述[J]. 力学学报, 2022, 54(3): 543-556. https://cdmd.cnki.com.cn/Article/CDMD-10358-1023101497.htm

    ZHA Wenshu, LI Daolun, SHEN Luhang, et al. Review of neural network-based methods for solving partial differential equations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 543-556. (in Chinese) https://cdmd.cnki.com.cn/Article/CDMD-10358-1023101497.htm
    [20] 闫海, 邓忠民. 基于深度学习的短纤维增强聚氨酯复合材料性能预测[J]. 复合材料学报, 2019, 36(6): 1413-1420. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201906007.htm

    YAN Hai, DENG Zhongmin. Prediction of properties of short fiber reinforced urethane polymer composites based on deep learning[J]. Acta Materiae Compositae Sinica, 2019, 36(6): 1413-1420. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201906007.htm
    [21] KANI J, ELSHEIKH A. Reduced-order modeling of subsurface multi-phase flow models using deep residual recurrent neural networks[J]. Transport in Porous Media, 2019, 126(3): 713-741. doi: 10.1007/s11242-018-1170-7
    [22] YANG H, GUO X, TANG S, et al. Derivation of heterogeneous material laws via data-driven principal component expansions[J]. Computational Mechanics, 2019, 64: 365-379. doi: 10.1007/s00466-019-01728-w
    [23] ZHANG J, CHEN W S, HAO H, et al. Performance of concrete targets mixed with coarse aggregates against rigid projectile impact[J]. International Journal of Impact Engineering, 2020, 141: 103565. doi: 10.1016/j.ijimpeng.2020.103565
    [24] NORRIS A N. A differential scheme for the effective moduli of composites[J]. Mechanics of Materials, 1985, 4(1): 1-16. doi: 10.1016/0167-6636(85)90002-X
    [25] WANG H L, LI Q B. Prediction of elastic modulus and Poisson's ratio for unsaturated concrete[J]. International Journal of Solids and Structures, 2007, 44(5): 1370-1379. doi: 10.1016/j.ijsolstr.2006.06.028
    [26] ZHANG J, WANG Z Y, YANG H W, et al. 3D meso-scale modeling of reinforcement concrete with high volume fraction of randomly distributed aggregates[J]. Construction and Building Materials, 2018, 164: 350-361. doi: 10.1016/j.conbuildmat.2017.12.229
    [27] 周杰, 赵婷婷, 陈青青, 等. 基于GoogLeNet的混凝土细观模型应力-应变曲线预测[J]. 应用数学和力学, 2022, 43(3): 290-299. doi: 10.21656/1000-0887.420136

    ZHOU Jie, ZHAO Tingting, CHEN Qingqing, et al. Prediction of concrete meso-model stress-strain curves based on GoogLeNet[J]. Applied Mathematics and Mechanics, 2022, 43(3): 290-299. (in Chinese) doi: 10.21656/1000-0887.420136
    [28] LI B B, JIANG J F, XIONG H B, et al. Improved concrete plastic-damage model for FRP-confined concrete based on true tri-axial experiment[J]. Composite Structures, 2021, 269: 114051. doi: 10.1016/j.compstruct.2021.114051
    [29] CHEN P, LIU J X, CUI S M, et al. Mesoscale analysis of concrete under axial compression[J]. Construction and Building Materials, 2022, 337: 127580. doi: 10.1016/j.conbuildmat.2022.127580
    [30] 苏捷. 混凝土受压与受拉性能的尺寸效应研究[D]. 长沙: 湖南大学, 2012.

    SU Jie. The research on the size effect of concrete behavior in compression and tension[D]. Changsha: Hunan University, 2012. (in Chinese)
    [31] 秦庆华, 杨庆生. 非均匀材料多场耦合行为的宏细观理论[M]. 北京: 高等教育出版社, 2006: 17-19.

    QIN Qinghua, YANG Qingsheng. Macro-Micro-Theory on Multi-Field Coupling Behavior of Heterogeneous Materials[M]. Beijing: Higher Education Press, 2006: 17-19. (in Chinese)
    [32] 毛晓敏, 张慧华, 纪晓磊, 等. 基于XFEM和GA-BP神经网络的裂纹智能识别研究[J]. 应用数学和力学, 2022, 43(11): 1268-1280. doi: 10.21656/1000-0887.420250

    MAO Xiaomin, ZHANG Huihua, JI Xiaolei, et al. Intelligent crack recognition based on XFEM and GA-BP neural networks[J]. Applied Mathematics and Mechanics, 2022, 43(11): 1268-1280. (in Chinese) doi: 10.21656/1000-0887.420250
    [33] DONG H, LINGHU J, NIE Y. Integrated wavelet-learning method for macroscopic mechanical properties prediction of concrete composites with hierarchical random configurations[J]. Composite Structures, 2023, 304(1): 116357.
    [34] 杜修力, 金浏. 混凝土材料宏观力学特性分析的细观单元等效化模型[J]. 计算力学学报, 2012, 29(5): 654-661. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201205004.htm

    DU Xiuli, JIN Liu. Analysis of macroscopic mechanical properties of concrete materials meso-unit equivalence model[J]. Chinese Journal of Computational Mechanics, 2012, 29(5): 654-661. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201205004.htm
    [35] 陈青青, 张煜航, 张杰, 等. 含孔隙混凝土二维细观建模方法研究[J]. 应用数学和力学, 2020, 41(2): 182-194. doi: 10.21656/1000-0887.400058

    CHEN Qingqing, ZHANG Yuhang, ZHANG Jie, et al. Study on a 2D mesoscopic modeling method for concrete with voids[J]. Applied Mathematics and Mechanics, 2020, 41(2): 182-194. (in Chinese) doi: 10.21656/1000-0887.400058
    [36] 陈青青. 含孔隙混凝土细观建模方法与数值研究[D]. 太原: 太原理工大学, 2020.

    CHEN Qingqing. Meso-scale modeling and numerical investigation of concrete with pores[D]. Taiyuan: Taiyuan University of Technology, 2020. (in Chinese)
    [37] 金浏, 余文轩, 杜修力, 等. 低应变率下混凝土动态拉伸破坏尺寸效应细观模拟[J]. 工程力学, 2019, 36(8): 59-78. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201908006.htm

    JIN Liu, YU Wenxuan, DU Xiuli, et al. Meso-scale simulation of size effect of dynamic tensile strength of concrete under low strain rates[J]. Engineering Mechanics, 2019, 36(8): 59-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201908006.htm
    [38] 吴震. EPS多孔混凝土力学性能试验及三维数值模拟研究[D]. 上海: 上海交通大学, 2012.

    WU Zhen. Experimental research and 3D modeling of EPS cellular concrete[D]. Shanghai: Shanghai Jiao Tong University, 2012. (in Chinese)
    [39] 金浏. 细观混凝土分析模型与方法研究[D]. 北京: 北京工业大学, 2014.

    JIN Liu. Study on meso-scopic model and analysis method of concrete[D]. Beijing: Beijing University of Technology, 2014. (in Chinese)
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  368
  • HTML全文浏览量:  90
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-13
  • 修回日期:  2023-12-18
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回