留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3D打印仿贻贝足丝结构的黏附性能

徐万崟 谢宇 钱劲

徐万崟, 谢宇, 钱劲. 3D打印仿贻贝足丝结构的黏附性能[J]. 应用数学和力学, 2024, 45(3): 261-272. doi: 10.21656/1000-0887.440162
引用本文: 徐万崟, 谢宇, 钱劲. 3D打印仿贻贝足丝结构的黏附性能[J]. 应用数学和力学, 2024, 45(3): 261-272. doi: 10.21656/1000-0887.440162
XU Wanyin, XIE Yu, QIAN Jin. Adhesive Performances of 3D Printed Biomimetic Mussel Byssal Structures[J]. Applied Mathematics and Mechanics, 2024, 45(3): 261-272. doi: 10.21656/1000-0887.440162
Citation: XU Wanyin, XIE Yu, QIAN Jin. Adhesive Performances of 3D Printed Biomimetic Mussel Byssal Structures[J]. Applied Mathematics and Mechanics, 2024, 45(3): 261-272. doi: 10.21656/1000-0887.440162

3D打印仿贻贝足丝结构的黏附性能

doi: 10.21656/1000-0887.440162
基金项目: 

国家自然科学基金 12125205

国家自然科学基金 12072316

国家自然科学基金 12132014

浙江省重点研发计划 2021C01183

浙江省自然科学基金 LD22A020001

详细信息
    作者简介:

    徐万崟(1996—),女,硕士生(E-mail:21924026@zju.edu.cn)

    通讯作者:

    钱劲(1978—),男,教授,博士生导师(通讯作者. E-mail:jqian@zju.edu.cn)

  • 中图分类号: O34; O39

Adhesive Performances of 3D Printed Biomimetic Mussel Byssal Structures

  • 摘要: 贻贝足丝是一种自然界存在的高性能生物黏附器,能够在不同环境下提供贻贝-固体表面之间的黏附作用. 近年来,许多研究者开始关注贻贝足丝的组成和宏微观结构对其黏附性能的定量影响,为仿生黏附器件的设计寻找思路. 该文结合3D打印技术、脱黏实验和有限元方法,系统研究了形状和几何参数对仿贻贝足丝结构脱黏模式和黏附性能的影响机制. 该文结果揭示了贻贝足丝的脱黏机理,发现贻贝足丝存在最优的足丝方向角,使其黏附性能最佳,探究了同一角度下足丝线-斑块连接位置和斑块底部形状对其黏附性能的影响. 最后,模拟了束状仿贻贝足丝结构在竖直拉力作用下的完整脱黏过程,所获得的锯齿状脱黏曲线表明束状结构具有相对稳定的抗脱黏能力. 这些研究结果有助于理解自然界贻贝足丝的脱黏行为,可为仿生黏附器件的优化设计提供基础和参考.
  • 图  1  贻贝足丝的形态结构

    Figure  1.  The morphological structures of mussel byssal

    图  2  仿贻贝足丝结构的设计和制备

    Figure  2.  Design and preparation of the biomimetic mussel byssal structure

    图  3  加载角度可调的仿贻贝足丝结构试样脱黏实验

    Figure  3.  The detachment experiment of biomimetic mussel byssal samples with adjustable loading angles

    图  4  实验和模拟得到的结果

    Figure  4.  Results obtained from experiments and simulations

    图  5  实验得到的足丝方向角对黏附性能的影响

    Figure  5.  Effects of the thread direction angles on adhesive performances obtained from experiments

    图  6  不同方向角下模拟与实验的脱黏过程对比

    Figure  6.  Comparison between the detachment processes obtained from simulations and experiments for different direction angles

    图  7  不同方向角下模拟得到的脱黏力随相对连接位置的变化

    Figure  7.  Effects of the relative junction position on the detachment force obtained from simulations for different direction angles

    图  8  模拟得到的斑块底部形状对黏附性能的影响

    Figure  8.  Effects of the plaque bottom shape on adhesive performances obtained from simulations

    图  9  束状仿贻贝足丝结构模型的黏附性能

    Figure  9.  The adhesive performance of the model for bundle-like biomimetic mussel byssal structures

    表  1  有限元模拟所用的材料性质[7]

    Table  1.   Material properties used in the finite element simulation[7]

    parameter value
    Young’s modulus of thread Et/MPa 50
    Young’s modulus of plaque Ep/MPa 2 600
    stiffness of cohesive contact K/(MPa/mm) 5
    maximum nominal stress of cohesive contact T/MPa 0.35
    cohesive energy of cohesive contact G/(N/mm) 0.09
    下载: 导出CSV
  • [1] COYNE K J, QIN X X, WAITE J H. Extensible collagen in mussel byssus: a natural block copolymer[J]. Science, 1997, 277(5333): 1830-1832. doi: 10.1126/science.277.5333.1830
    [2] PRIEMEL T, DEGTYAR E, DEAN M N, et al. Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication[J]. Nature Communications, 2017, 8(1): 14539. doi: 10.1038/ncomms14539
    [3] BERTOLDI K, BOYCE M C. Mechanics of the hysteretic large strain behavior of mussel byssus threads[J]. Journal of Materials Science, 2007, 42(21): 8943-8956. doi: 10.1007/s10853-007-1649-z
    [4] GEORGE M N, CARRINGTON E. Environmental post-processing increases the adhesion strength of mussel byssus adhesive[J]. Biofouling, 2018, 34(4): 388-397. doi: 10.1080/08927014.2018.1453927
    [5] QIN Z, BUEHLER M J. Impact tolerance in mussel thread networks by heterogeneous material distribution[J]. Nature Communications, 2013, 4(1): 2187. doi: 10.1038/ncomms3187
    [6] SUHRE M H, GERTZ M, STEEGBORN C, et al. Structural and functional features of a collagen-binding matrix protein from the mussel byssus[J]. Nature Communications, 2014, 5(1): 3392. doi: 10.1038/ncomms4392
    [7] DESMOND K W, ZACCHIA N A, WAITE J H, et al. Dynamics of mussel plaque detachment[J]. Soft Matter, 2015, 11(34): 6832-6839. doi: 10.1039/C5SM01072A
    [8] WAITE J H. Mussel adhesion: essential footwork[J]. Journal of Experimental Biology, 2017, 220(4): 517-530. doi: 10.1242/jeb.134056
    [9] LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430. doi: 10.1126/science.1147241
    [10] AHN B K. Perspectives on mussel-inspired wet adhesion[J]. Journal of the American Chemical Society, 2017, 139(30): 10166-10171. doi: 10.1021/jacs.6b13149
    [11] PRIEMEL T, PALIA G, FÖRSTE F, et al. Microfluidic-like fabrication of metal ion: cured bioadhesives by mussels[J]. Science, 2021, 374(6564): 206-211. doi: 10.1126/science.abi9702
    [12] GUO Q, CHEN J, WANG J, et al. Recent progress in synthesis and application of mussel-inspired adhesives[J]. Nanoscale, 2020, 12(3): 1307-1324. doi: 10.1039/C9NR09780E
    [13] ZHAO Y, WU Y, WANG L, et al. Bio-inspired reversible underwater adhesive[J]. Nature Communications, 2017, 8(1): 1-8. doi: 10.1038/s41467-016-0009-6
    [14] ARIAS S, AMINI S, KRVGER J M, et al. Implementing Zn2+ ion and pH-value control into artificial mussel glue proteins by abstracting a His-rich domain from preCollagen[J]. Soft Matter, 2021, 17(8): 2028-2033. doi: 10.1039/D0SM02118K
    [15] KRVGER J M, BOERNER H G. Accessing the next generation of synthetic mussel-glue polymers via mussel-inspired polymerization[J]. Angewandte Chemie International Edition, 2021, 60(12): 6408-6413. doi: 10.1002/anie.202015833
    [16] ZHANG C, WU B H, ZHOU Y S, et al. Mussel-inspired hydrogels: from design principles to promising applications[J]. Chemical Society Reviews, 2020, 49(11): 3605-3637. doi: 10.1039/C9CS00849G
    [17] 丁洁莹, 薛峰, 苟晓凡. 考虑磁通流动效应的超导薄膜基底结构界面断裂行为研究[J]. 应用数学和力学, 2022, 43(6): 631-638. doi: 10.21656/1000-0887.420353

    DING Jieying, XUE Feng, GOU Xiaofan. A study on interfacial fracture behaviors of superconducting thin film/substrate structures on taking the account of effects of flux flow[J]. Applied Mathematics and Mechanics, 2022, 43(6): 631-638. (in Chinese) doi: 10.21656/1000-0887.420353
    [18] QURESHI D A, GOFFREDO S, KIM Y, et al. Why mussel byssal plaques are tiny yet strong in attachment[J]. Matter, 2022, 5(2): 710-724. doi: 10.1016/j.matt.2021.12.001
    [19] SACHS E M, HAGGERTY J S, CIMA M J, et al. Three-dimensional printing techniques: US patent 5204055[P]. 1993-04-20.
    [20] GROTH C, KRAVITZ N D, JONES P E, et al. Three-dimensional printing technology[J]. Journal of Clinical Orthodontics, 2014, 48(8): 475-485.
    [21] ZHANG J, ZHANG X. Simulating low-velocity impact induced delamination in composites by a quasi-static load model with surface-based cohesive contact[J]. Composite Structures, 2015, 125: 51-57. doi: 10.1016/j.compstruct.2015.01.050
    [22] BELL E C, GOSLINE J M. Mechanical design of mussel byssus: material yield enhances attachment strength[J]. Journal of Experimental Biology, 1996, 199(4): 1005-1017. doi: 10.1242/jeb.199.4.1005
    [23] BRAZEE S L, CARRINGTON E. Interspecific comparison of the mechanical properties of mussel byssus[J]. The Biological Bulletin, 2006, 211(3): 263-274. doi: 10.2307/4134548
    [24] GORB S, VARENBERG M, PERESSADKO A, et al. Biomimetic mushroom-shaped fibrillar adhesive microstructure[J]. Journal of The Royal Society Interface, 2007, 4(13): 271-275. doi: 10.1098/rsif.2006.0164
    [25] SPUSKANYUK A V, MCMEEKING R M, DESHPANDE V S, et al. The effect of shape on the adhesion of fibrillar surfaces[J]. Acta Biomaterialia, 2008, 4(6): 1669-1676. doi: 10.1016/j.actbio.2008.05.026
    [26] CARBONE G, PIERRO E, GORB S N. Origin of the superior adhesive performance of mushroom-shaped microstructured surfaces[J]. Soft Matter, 2011, 7(12): 5545-5552. doi: 10.1039/c0sm01482f
    [27] EVANS M A, IAN CAMPBELL R. A comparative evaluation of industrial design models produced using rapid prototyping and workshop-based fabrication techniques[J]. Rapid Prototyping Journal, 2003, 9(5): 344-351. doi: 10.1108/13552540310502248
    [28] MELCHELS F P, FEIJEN J, GRIJPMA D W. A review on stereolithography and its applications in biomedical engineering[J]. Biomaterials, 2010, 31(24): 6121-6130. doi: 10.1016/j.biomaterials.2010.04.050
    [29] 韩斌慧, 郭紫淇. 冲切模橡胶卸料板设计及其3D打印复膜成型研究[J]. 合成材料老化与应用, 2022, 51(4): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HOCE202204007.htm

    HAN Binhui, GUO Ziqi. Design of punching die rubber stripper plate and research on 3D printing lamination forming[J]. Synthetic Materials Aging and Application, 2022, 51(4): 23-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HOCE202204007.htm
    [30] 张超, 刘占芳. 低压对变温环境下高聚物黏结炸药界面损伤的抑制[J]. 应用数学和力学, 2020, 41(10): 1057-1071. doi: 10.21656/1000-0887.410092

    ZHANG Chao, LIU Zhanfang. Inhibition of low pressure on interfacial damage in polymer bonded explosive under temperature fluctuation[J]. Applied Mathematics and Mechanics, 2020, 41(10): 1057-1071. (in Chinese) doi: 10.21656/1000-0887.410092
    [31] 邓健, 肖鹏程, 王增贤, 等. 基于黏聚区模型的ENF试件层间裂纹扩展分析[J]. 应用数学和力学, 2022, 43(5): 515-523. doi: 10.21656/1000-0887.430082

    DENG Jian, XIAO Pengcheng, WANG Zengxian, et al. Interlaminar crack propagation analysis of ENF specimens based on the cohesive zone model[J]. Applied Mathematics and Mechanics, 2022, 43(5): 515-523. (in Chinese) doi: 10.21656/1000-0887.430082
    [32] WAITE J H, ANDERSEN N H, JEWHURST S, et al. Mussel adhesion: finding the tricks worth mimicking[J]. The Journal of Adhesion, 2005, 81(3/4): 297-317.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  28
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-29
  • 修回日期:  2023-07-31
  • 刊出日期:  2024-03-01

目录

    /

    返回文章
    返回