留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分层法的功能梯度三明治壳线性弯曲无网格分析

陈卫 汤智宏 彭林欣

陈卫, 汤智宏, 彭林欣. 基于分层法的功能梯度三明治壳线性弯曲无网格分析[J]. 应用数学和力学, 2024, 45(5): 539-553. doi: 10.21656/1000-0887.440262
引用本文: 陈卫, 汤智宏, 彭林欣. 基于分层法的功能梯度三明治壳线性弯曲无网格分析[J]. 应用数学和力学, 2024, 45(5): 539-553. doi: 10.21656/1000-0887.440262
CHEN Wei, TANG Zhihong, PENG Linxin. Linear Bending Analysis of Functionally Graded Sandwich Shells With the Meshless Method Based on the Layer-Wise Theory[J]. Applied Mathematics and Mechanics, 2024, 45(5): 539-553. doi: 10.21656/1000-0887.440262
Citation: CHEN Wei, TANG Zhihong, PENG Linxin. Linear Bending Analysis of Functionally Graded Sandwich Shells With the Meshless Method Based on the Layer-Wise Theory[J]. Applied Mathematics and Mechanics, 2024, 45(5): 539-553. doi: 10.21656/1000-0887.440262

基于分层法的功能梯度三明治壳线性弯曲无网格分析

doi: 10.21656/1000-0887.440262
基金项目: 

国家自然科学基金 12162004

国家自然科学基金 11562001

详细信息
    作者简介:

    陈卫(1991—),男,讲师,博士,硕士生导师(E-mail: chenwei@usc.edu.cn)

    通讯作者:

    彭林欣(1977—),男,教授,博士,博士生导师(通讯作者. E-mail: penglx@gxu.edu.cn)

  • 中图分类号: O342

Linear Bending Analysis of Functionally Graded Sandwich Shells With the Meshless Method Based on the Layer-Wise Theory

  • 摘要: 基于3D连续壳理论和一阶剪切变形理论,采用分层法,提出了一种求解功能梯度三明治壳线性弯曲问题的移动最小二乘无网格法. 通过映射技术,将随动坐标系上的二维无网格节点信息映射到三维壳中,并在随动坐标系上形成移动最小二乘近似的形函数. 因基于3D连续壳理论的壳数值解答无法像特定壳一样给出其厚度方向的显式表达式,该文将功能梯度三明治材料壳结构中材料参数变化的部分划分成若干层,得到每层的材料参数为常数. 利用最小势能原理,推导出了功能梯度三明治壳线性弯曲的无网格控制方程. 通过引入一个厚度方向的线性变换,使得每层厚度方向的Gauss积分均在-1至1区间内,不违背一阶剪切变形理论. 采用完全转化法施加本质边界条件. 以功能梯度三明治板、柱壳、双曲扁壳经典几何形状壳为例,讨论了不同梯度系数、径厚比和曲率半径等对数值结果的影响,并将计算结果与文献解对比. 研究表明,该方法在求解不同形状的功能梯度三明治壳线性弯曲问题时,具有收敛性好、计算精度高的特点.
  • 图  1  曲壳无网格几何模型及映射技术

    Figure  1.  The meshless geometric model for the curved shell and the mapping technique

    图  2  3类功能梯度壳

    Figure  2.  Three types of functionally graded shells

    图  3  不同节点数下方板挠度分析结果

    Figure  3.  Analysis results of plate deflections under different node numbers

    图  4  不同宽厚比下方板中点收敛性分析

    Figure  4.  Convergence analysis of the midpoint of the plate under different width-to-thickness ratios

    图  5  功能梯度方板受正弦荷载示意图

    Figure  5.  Schematic diagram of a functionally graded square plate under uniformly distributed load

    图  6  功能梯度柱壳示意图

    Figure  6.  Schematic diagram of a functionally graded cylindrical shell

    图  7  双曲壳几何模型

    Figure  7.  Geometry of a doubly-curved functionally graded shell

    图  8  梯度指数为2和Rx/a=5的四边简支铝/氧化铝不同形状壳挠度云图(EFG)

    Figure  8.  Deflection neghogram for the simply supported Al/Al2O3 different shape shells with gradient indices p=2 and Rx/a=5(EFG)

    表  1  功能梯度材料组成元素

    Table  1.   Properties of the FGM components

    property Al ceramic
    Al2O3 ZrO2
    E/GPa 70 380 200
    ν 0.3 0.3 0.3
    下载: 导出CSV

    表  2  分层数及节点数对铝/氧化铝方板中点归一化挠度w1的影响(p=10,Type B)

    Table  2.   Effects of the numbers of layers and nodes on central deflectionw1 of the Al/Al2O3 square plate (p=10, Type B)

    layers present
    5×5 9×9 13×13
    1/4/1 0.829 7 0.826 1 0.826 1
    1/8/1 0.864 8 0.861 0 0.861 0
    1/12/1 0.861 9 0.858 0 0.858 0
    1/16/1 0.860 8 0.857 0 0.857 0
    下载: 导出CSV

    表  3  不同梯度指数p下,铝/氧化铝方板中点归一化挠度w1(Type B)

    Table  3.   Normalized central deflection w1 for the Al/Al2O3 square plate with different gradient indices p(Type B)

    method p
    0 0.5 1 4 10
    Nguyen et al.[35](ITSDT) 0.374 4 0.524 5 0.634 5 0.833 1 0.880 7
    Neves et al.[34](quasi-3D) 0.371 1 0.523 8 0.630 5 0.819 9 0.864 5
    present 0.374 9 0.523 1 0.632 2 0.819 8 0.858 0
    下载: 导出CSV

    表  4  不同层状厚度与不同梯度指数p下,铝/氧化锆方板中点归一化挠度w2 (Type C)

    Table  4.   Normalized central deflection w2 for the Al/ZrO2 square plate with different layer thicknesses and gradient indices p(Type C)

    p theory 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1
    1 Nguyen et al. [35](ITSDT) 0.323 5 0.306 2 0.291 9 0.280 8 0.270 9
    Zenkour[36](FSDT) 0.324 8 0.307 5 0.293 0 0.281 7 0.271 7
    Neves et al. [34](quasi-3D) - 0.307 0 0.292 9 0.282 0 0.272 2
    present 0.324 3 0.307 1 0.292 7 0.281 4 0.271 5
    5 Nguyen et al. [35](ITSDT) 0.409 1 0.391 7 0.371 3 0.349 5 0.334 7
    Zenkour[36](FSDT) 0.411 2 0.394 2 0.373 6 0.351 2 0.336 3
    Neves et al. [34](quasi-3D) - 0.390 5 0.370 5 0.349 0 0.334 7
    present 0.410 8 0.393 7 0.372 2 0.350 9 0.336 0
    10 Nguyen et al. [35](ITSDT) 0.417 5 0.403 9 0.385 4 0.362 0 0.348 2
    Zenkour[36](FSDT) 0.419 2 0.406 6 0.387 9 0.364 0 0.350 0
    Neves et al. [34](quasi-3D) - 0.402 6 0.384 3 0.361 2 0.348 0
    present 0.418 9 0.406 2 0.387 5 0.363 6 0.349 7
    下载: 导出CSV

    表  5  分层数及节点数对四边简支铝/氧化锆柱壳中点挠度w3的影响(p=1,Type A)

    Table  5.   Effects of the numbers of layers and nodes on central deflection w3 of the simply supported Al/ZrO2 cylindrical shell (p=1, Type A)

    number of layers present
    5×5 9×9 13×13 17×17
    4 0.060 76 0.060 07 0.060 10 0.060 12
    8 0.060 97 0.060 29 0.060 30 0.060 34
    12 0.061 01 0.060 33 0.060 36 0.060 38
    下载: 导出CSV

    表  6  不同边界条件与不同梯度指数p下,铝/氧化锆柱壳中点归一化挠度w3(Type A)

    Table  6.   Normalized central deflection w3 for the Al/ZrO2 cylindrical shell with different boundary conditions and gradient indices p(Type A)

    B.Cs method p
    0 0.2 0.5 1 2 5
    SSSS kp-Ritz[24] 0.042 67 0.048 07 0.054 25 0.060 72 0.066 58 0.072 35
    present 0.042 47 0.047 69 0.053 80 0.060 30 0.066 37 0.072 46
    CCCC kp-Ritz[24] 0.013 47 0.015 16 0.017 11 0.019 15 0.021 02 0.022 89
    present 0.013 71 0.015 39 0.017 36 0.019 47 0.021 45 0.023 47
    下载: 导出CSV

    表  7  不同径厚比R/h与不同梯度指数p下,四边简支铝/氧化锆柱壳中点归一化挠度w3(Type A)

    Table  7.   Normalized central deflection w3 for the simply supported Al/ZrO2 cylindrical shell with different radius-to-thickness ratios R/h and gradient indices p(Type A)

    p R/h method
    FSDT[37] CST[37] analytical[38] kp-Ritz[24] present
    1 50 0.004 24 0.004 08 0.004 30 0.004 28 0.004 25
    100 0.060 56 0.060 02 0.060 91 0.060 72 0.060 30
    200 0.725 84 0.724 70 0.727 10 0.728 30 0.722 21
    2 50 0.004 64 0.004 46 0.004 70 0.004 69 0.004 67
    100 0.066 40 0.065 78 0.066 79 0.066 78 0.066 37
    200 0.803 07 0.801 73 0.805 60 0.805 70 0.801 18
    下载: 导出CSV

    表  8  分层数及节点数对四边简支Type B铝/氧化铝柱壳中点挠度wc×10-11的影响,p=1,R/h=1 000(单位: m)

    Table  8.   Effects of the numbers of layers and nodes on central deflection wc×10-11 for the simply supported Al/Al2O3 cylindrical shell, p=1, R/h=1 000, Type B (unit: m)

    layers present
    31×3 51×5 71×7 91×9
    1/4/1 3 946.5 4 155.7 4 172.5 4 173.7
    1/8/1 3 950.7 4 159.2 4 176.2 4 177.1
    1/12/1 3 951.5 4 159.9 4 176.9 4 177.3
    下载: 导出CSV

    表  9  不同径厚比R/h与不同梯度指数p下,四边简支Type B铝/氧化铝柱壳中点挠度wc×10-11(单位: m)

    Table  9.   Normalized central deflection wc×10-11 for the simply supported Al/Al2O3 cylindrical shell with different radius-to-thickness ratios R/h and gradient indices p, Type B (unit: m)

    p method R/h
    4 10 100 1 000
    1 CST[39] 0.004 6 0.066 1 55.428 4 223.3
    FSDT[39] 0.065 9 0.209 9 56.530 4 224.5
    present 0.064 8 0.208 7 56.420 4 176.2
    5 CST[39] 0.006 1 0.086 4 73.651 6 578.3
    FSDT[39] 0.102 0 0.312 9 75.437 6 582.7
    present 0.098 9 0.310 5 75.120 6 579.8
    下载: 导出CSV

    表  10  分层数及节点数对四边简支铝/氧化铝柱壳中点挠度w4的影响

    Table  10.   Effects of the numbers of layers and nodes on central deflection w4 of the simply supported Al/Al2O3 cylindrical shell

    layers present
    5×5 9×9 13×13 17×17
    4 8.873 9 8.762 6 8.759 9 8.760 0
    8 9.010 0 8.897 0 8.894 3 8.894 4
    12 9.036 3 8.923 0 8.920 2 8.920 4
    16 9.045 6 8.932 1 8.929 4 8.929 5
    下载: 导出CSV

    表  11  不同梯度指数p下,四边简支铝/氧化铝不同形状壳中点归一化挠度w4

    Table  11.   Normalized central deflectionw4 for the simply supported Al/Al2O3 different shells with various gradient indices p

    shell type method p
    0 1 5 10
    cylindrical shell (Rx/a=5, Ry/b=∞) ESDT[37] 4.526 5 8.964 8 13.942 0 15.460 0 24.572 0
    FSDT[37] 4.492 1 8.907 2 13.683 0 15.152 0 24.385 0
    present 4.525 5 8.920 2 13.827 4 15.401 0 24.567 1
    spherical shell (Rx/a=5, Ry/b=5) ESDT[37] 4.157 1 8.119 3 12.816 0 14.333 0 22.567 0
    FSDT[37] 4.128 5 8.072 9 12.601 0 14.071 0 22.412 0
    present 4.161 1 8.073 9 12.699 3 14.268 6 22.588 9
    hyperbolic paraboloid shell (Rx/a=5, Ry/b=-5) ESDT[37] 4.664 6 9.286 8 14.362 0 15.876 0 25.322 0
    FSDT[37] 4.627 8 9.224 6 14.086 0 15.550 0 25.122 0
    present 4.653 9 9.239 8 14.250 7 15.815 4 25.263 9
    elliptical paraboloid shell (Rx/a=5, Ry/b=7.5) ESDT[37] 4.300 3 8.444 2 13.253 0 14.772 0 23.344 0
    FSDT[37] 4.269 4 8.393 7 13.021 0 14.493 0 23.177 0
    present 4.303 0 8.399 1 13.136 1 14.709 9 23.359 2
    下载: 导出CSV
  • [1] KOIZUMI M. The concept of FGM[J]. Ceramic Transactions, 1993, 34: 3-10.
    [2] 沈惠申. 功能梯度复合材料板壳结构的弯曲、屈曲和振动[J]. 力学进展, 2004, 34(1): 53-60. doi: 10.3321/j.issn:1000-0992.2004.01.006

    SHEN Huishen. Bending, buckling and vibration of functionally graded plates and shells[J]. Advances in Mechanics, 2004, 34(1): 53-60. (in Chinese) doi: 10.3321/j.issn:1000-0992.2004.01.006
    [3] LIEW K M, ZHAO X, FERREIRA A J M. A review of meshless methods for laminated and functionally graded plates and shells[J]. Composite Structures, 2011, 93(8): 2031-2041. doi: 10.1016/j.compstruct.2011.02.018
    [4] 李尧臣, 亓峰, 仲政. 功能梯度矩形板的近似理论与解析解[J]. 力学学报, 2010, 42(4): 670-681. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201004013.htm

    LI Yaochen, QI Feng, ZHONG Zheng. Approximation theory and analytical solution for functionally graded piezoelectric rectangular plates[J]. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(4): 670-681. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201004013.htm
    [5] WOODWARD B, KASHTALYAN M. Three-dimensional elasticity solution for bending of transversely isotropic functionally graded plates[J]. European Journal of Mechanics A: Solids, 2011, 30(5): 705-718. doi: 10.1016/j.euromechsol.2011.04.003
    [6] 沈璐璐, 蔡方圆, 杨博. 功能梯度压电板柱面弯曲的弹性力学解[J]. 应用数学和力学, 2023, 44(3): 272-281. doi: 10.21656/1000-0887.430224

    SHEN Lulu, CAI Fangyuan, YANG Bo. Elastic solutions for cylindrical bending of functionally graded piezoelectric material plates[J]. Applied Mathematics and Mechanics, 2023, 44(3): 272-281. (in Chinese) doi: 10.21656/1000-0887.430224
    [7] 张靖华, 李世荣, 马连生. 功能梯度截顶圆锥壳的热弹性弯曲精确解[J]. 力学学报, 2008, 40(2): 185-193. doi: 10.3321/j.issn:0459-1879.2008.02.006

    ZHANG Jinghua, LI Shirong, MA Liansheng. Exact solution of thermoelastic bending for functionally graded truncated conical shells[J]. Chinese Journal of Theoretical and Applied Mechanics, 2008, 40(2): 185-193. (in Chinese) doi: 10.3321/j.issn:0459-1879.2008.02.006
    [8] PAYETTE G S, REDDY J N. A seven-parameter spectral/hp finite element formulation for isotropic, laminated composite and functionally graded shell structures[J]. Computer Methods in Applied Mechanics and Engineering, 2014, 278: 664-704. doi: 10.1016/j.cma.2014.06.021
    [9] PARAND A A, ALIBEIGLOO A. Static and vibration analysis of sandwich cylindrical shell with functionally graded core and viscoelastic interface using DQM[J]. Composites(Part B): Engineering, 2017, 126: 1-16. doi: 10.1016/j.compositesb.2017.05.071
    [10] 刘涛, 李朝东, 汪超, 等. 基于三阶剪切变形理论的压电功能梯度板静力学等几何分析[J]. 振动与冲击, 2021, 40(1): 73-85. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202101012.htm

    LIU Tao, LI Chaodong, WANG Chao, et al. Static iso-geometric analysis of piezoelectric functionally graded plate based on third-order shear deformation theory[J]. Journal of Vibration and Shock, 2021, 40(1): 73-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202101012.htm
    [11] 黄干云, 汪越胜, 余寿文. 功能梯度材料的平面断裂力学分析[J]. 力学学报, 2005, 37(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200501001.htm

    HUANG Ganyun, WANG Yuesheng, YU Shouwen. A new multi-layered model for in-plane fracture analysis of functionally graded materials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(1): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB200501001.htm
    [12] WANG Y S, HUANG G Y, GROSS D. On the mechanical modeling of functionally graded interfacial zone with a Griffith crack: anti-plane deformation[J]. International Journal of Fracture, 2003, 125(3): 189-205.
    [13] 黄立新, 姚祺, 张晓磊, 等. 基于分层法的功能梯度材料有限元分析[J]. 玻璃钢/复合材料, 2013(2): 43-48. doi: 10.3969/j.issn.1003-0999.2013.02.009

    HUANG Lixin, YAO Qi, ZHANG Xiaolei, et al. Finite element analysis of functionally graded materials based on layering method[J]. Composite Science and Engineering, 2013(2): 43-48. (in Chinese) doi: 10.3969/j.issn.1003-0999.2013.02.009
    [14] NIKBAKHT S, SALAMI S J, SHAKERI M. Three dimensional analysis of functionally graded plates up to yielding, using full layer-wise finite element method[J]. Composite Structures, 2017, 182: 99-115. doi: 10.1016/j.compstruct.2017.09.022
    [15] BRISCHETTO S. A 3D layer-wise model for the correct imposition of transverse shear/normal load conditions in FGM shells[J]. International Journal of Mechanical Sciences, 2018, 136: 50-66. doi: 10.1016/j.ijmecsci.2017.12.013
    [16] 龙述尧, 刘凯远, 李光耀. 功能梯度材料中的无网格局部径向点插值法[J]. 湖南大学学报(自然科学版), 2007, 34(3): 41-44. doi: 10.3321/j.issn:1000-2472.2007.03.010

    LONG Shuyao, LIU Kaiyuan, LI Guangyao. A meshless local radial point interpolation method for the analysis of functionally graded materials[J]. Journal of Hunan University (Natural Sciences), 2007, 34(3): 41-44. (in Chinese) doi: 10.3321/j.issn:1000-2472.2007.03.010
    [17] 邵玉龙, 段庆林, 李锡夔, 等. 功能梯度材料的二阶一致无网格法[J]. 工程力学, 2017, 34(3): 15-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201703002.htm

    SHAO Yulong, DUAN Qinlin, LI Xikui, et al. Quadratically consistent meshfree method for functionally graded materials[J]. Engineering Mechanics, 2017, 34(3): 15-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201703002.htm
    [18] QIAN L F, BATRA R C, CHEN L M. Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method[J]. Composites(Part B): Engineering, 2004, 35: 685-697. doi: 10.1016/j.compositesb.2004.02.004
    [19] LEE Y Y, ZHAO X, LIEW K M. Thermoelastic analysis of functionally graded plates using the element-free kp-Ritz method[J]. Smart Materials and Structures, 2009, 18(3): 035007. doi: 10.1088/0964-1726/18/3/035007
    [20] THAI C H, DO V N V, NGUYEN-XUAN H. An improved moving Kriging-based meshfree method for static, dynamic and buckling analyses of functionally graded isotropic and sandwich plates[J]. Engineering Analysis With Boundary Elements, 2016, 64: 122-136. doi: 10.1016/j.enganabound.2015.12.003
    [21] HOSSEINI S, RAHIMI G, ANANI Y. A meshless collocation method based on radial basis functions for free and forced vibration analysis of functionally graded plates using FSDT[J]. Engineering Analysis With Boundary Elements, 2021, 125: 168-177. doi: 10.1016/j.enganabound.2020.12.016
    [22] VU T V, KHOSRAVIFARD A, HEMATIYAN M R, et al. Enhanced meshfree method with new correlation functions for functionally graded plates using a refined inverse sin shear deformation plate theory[J]. European Journal of Mechanics A: Solids, 2019, 74: 160-175. doi: 10.1016/j.euromechsol.2018.11.005
    [23] SLADEK J, SLADEK V, ZHANG C, et al. Static and dynamic analysis of shallow shells with functionally graded and orthotropic material properties[J]. Mechanics of Advanced Materials and Structures, 2008, 15(2): 142-156. doi: 10.1080/15376490701810480
    [24] ZHAO X, LEE Y Y, LIEW K M. Thermoelastic and vibration analysis of functionally graded cylindrical shells[J]. International Journal of Mechanical Sciences, 2009, 51(9/10): 694-707.
    [25] ZHAO X, LIEW K M. A mesh-free method for analysis of the thermal and mechanical buckling of functionally graded cylindrical shell panels[J]. Computational Mechanics, 2010, 45: 297-310. doi: 10.1007/s00466-009-0446-8
    [26] ZHAO X, LIEW K M. Free vibration analysis of functionally graded conical shell panels by a meshless method[J]. Composite Structures, 2011, 93(2): 649-664. doi: 10.1016/j.compstruct.2010.08.014
    [27] MELLOULI H, JRAD H, WALI M, et al. Meshfree implementation of the double director shell model for FGM shell structures analysis[J]. Engineering Analysis With Boundary Elements, 2019, 99: 111-121. doi: 10.1016/j.enganabound.2018.10.013
    [28] SIMO J C, FOX D D, RIFAI M S. Formulation and computational aspects of a stress resultant geometrically exact shell model[J]. Computation Mechanics, 1990, 55: 751-759.
    [29] WANG L, LIU Y, ZHOU Y, et al. Static and dynamic analysis of thin functionally graded shell with in-plane material inhomogeneity[J]. International Journal of Mechanical Sciences, 2021, 193: 106165. doi: 10.1016/j.ijmecsci.2020.106165
    [30] AHMAD S, IRONS B M, ZIENKIEWICZ O C. Analysis of thick and thin shell structures by curved finite elements[J]. International Journal for Numerical Methods in Engineering, 1970, 2: 419-451. doi: 10.1002/nme.1620020310
    [31] SALKAUSKAS P L. Surfaces generated by moving least squares methods[J]. Mathematics of Computation, 1981, 37(155): 141-158. doi: 10.1090/S0025-5718-1981-0616367-1
    [32] CHEN J S, PAN C, WU C T, et al. Reproducing kernel particle methods for large deformation analysis of non-linear structures[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(4): 195-227.
    [33] TIMOSHENKO S. Theory of Plates and Shells[M]. New York: McGraw-Hill Book Company, 1959.
    [34] NEVES A M A, FERREIRA A J M, CARRERA E, et al. Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique[J]. Composites(Part B): Engineering, 2013, 44(1): 657-674. doi: 10.1016/j.compositesb.2012.01.089
    [35] NGUYEN V H, NGUYEN T K, THAI H T, et al. A new inverse trigonometric shear deformation theory for isotropic and functionally graded sandwich plates[J]. Composites(Part B): Engineering, 2014, 66: 233-246. doi: 10.1016/j.compositesb.2014.05.012
    [36] ZENKOUR A M. A comprehensive analysis of functionally graded sandwich plates, part 1: deflection and stresses[J]. International Journal of Solids and Structures, 2005, 42(18): 5224-5242.
    [37] SAYYAD A S, GHUGAL Y M. Static and free vibration analysis of doubly-curved functionally graded material shells[J]. Composite Structures, 2021, 269: 114045. doi: 10.1016/j.compstruct.2021.114045
    [38] HUAN D T, TU T M, QUOC T H. Analytical solutions for bending, buckling and vibration analysis of functionally graded cylindrical panel[J]. Vietnam Journal of Science Technology, 2017, 55(5): 587-597. doi: 10.15625/2525-2518/55/5/8843
    [39] CARRERA E, BRISCHETTO S, CINEFRA M, et al. Effects of thickness stretching in functionally graded plates and shells[J]. Composites(Part B): Engineering, 2011, 42(2): 123-133. doi: 10.1016/j.compositesb.2010.10.005
  • 加载中
图(8) / 表(11)
计量
  • 文章访问数:  210
  • HTML全文浏览量:  85
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-29
  • 修回日期:  2023-12-15
  • 刊出日期:  2024-05-01

目录

    /

    返回文章
    返回