留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种数值阻尼耗散可控的结构动力方程积分方法

刘伟 童小龙 金蓉

刘伟, 童小龙, 金蓉. 一种数值阻尼耗散可控的结构动力方程积分方法[J]. 应用数学和力学, 2024, 45(7): 922-935. doi: 10.21656/1000-0887.440292
引用本文: 刘伟, 童小龙, 金蓉. 一种数值阻尼耗散可控的结构动力方程积分方法[J]. 应用数学和力学, 2024, 45(7): 922-935. doi: 10.21656/1000-0887.440292
LIU Wei, TONG Xiaolong, JIN Rong. An Integration Method With Controllable Numerical Damping Dissipation for Structural Dynamic Equations[J]. Applied Mathematics and Mechanics, 2024, 45(7): 922-935. doi: 10.21656/1000-0887.440292
Citation: LIU Wei, TONG Xiaolong, JIN Rong. An Integration Method With Controllable Numerical Damping Dissipation for Structural Dynamic Equations[J]. Applied Mathematics and Mechanics, 2024, 45(7): 922-935. doi: 10.21656/1000-0887.440292

一种数值阻尼耗散可控的结构动力方程积分方法

doi: 10.21656/1000-0887.440292
基金项目: 

湖南省教育厅科学研究项目 22B0681

湖南省自然科学基金 2023JJ50281

2022年国家级大学生创新创业计划 S202212658006

详细信息
    作者简介:

    刘伟(1989―),男,讲师,博士(E-mail: lwei_work@163.com)

    通讯作者:

    童小龙(1983―),男,教授,博士(通讯作者. E-mail: tongxiaolong@hnist.edu.cn)

  • 中图分类号: O39

An Integration Method With Controllable Numerical Damping Dissipation for Structural Dynamic Equations

  • 摘要: 数值耗散是数值积分方法的重要特性,直接影响数值仿真结果的准确性. 对于含有虚假高频振动的动力系统,数值耗散能够改善数值仿真结果,但是对于具有真实高频振动的动力系统,数值耗散则会导致计算结果失真. 该研究针对结构动力系统的求解,提出了一种数值耗散可控的两子步隐式数值积分方法. 基于理论推导,详细介绍了新积分方法的谱半径、稳定性、振幅衰减和周期延长等数值特性. 新隐式积分方法通过算法参数α能够对高频虚假振动数值耗散完全可控,相应的耗散比例为1-|α|,其中-1≤α≤1. 通过单自由度动力系统、高频虚假振动系统和多自由度非线性弹簧质量系统三个典型算例,分别证明了新隐式积分方法在计算精确性、高频数值耗散和非线性求解能力方面的优越性.
  • 图  1  算法的谱半径

     为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  1.  Spectral radii of the proposed method

    图  2  本文方法和典型算法在振幅衰减和周期延长的对比

    Figure  2.  Comparison between the proposed method and typical algorithms for the percentage amplitude decay and the period elongation for ξ=0

    图  3  典型隐式算法绝对误差

    Figure  3.  Absolute errors of typical implicit methods for various steps

    图  4  本文隐式算法绝对误差

    Figure  4.  Absolute errors of proposed implicit methods for various steps

    图  5  三自由度弹簧系统模型

    Figure  5.  The model for the 3-DOF spring system

    图  6  典型隐式算法求解的节点2加速度时程曲线

    Figure  6.  Acceleration history curves of node 2 for typical implicit methods

    图  7  本文隐式算法和Wilson方法求解的节点2加速度时程曲线

    Figure  7.  Acceleration history curves of node 2 for the Wilson method and the proposed implicit method

    图  8  节点2的速度时程曲线

    Figure  8.  Velocity time histories of node 2

    图  9  节点2和节点3的位移

    Figure  9.  Displacements of node 2 and node 3

    图  10  节点3的加速度时程曲线

    Figure  10.  Acceleration time histories of node 3

    图  11  节点3的速度时程曲线

    Figure  11.  Velocity time histories of node 3

    图  12  多自由度弹簧动力系统

    Figure  12.  The multi-DOF nonlinear spring-mass system

    图  13  第2 000个弹簧质量块的位移响应

    Figure  13.  Displacement responses of the 2 000th mass

    图  14  第2 000个弹簧质量块的速度响应

    Figure  14.  Velocity responses of the 2 000th mass

  • [1] DOKAINISH M A, SUBBARAJ K. A survey of direct time-integration methods in computational structural dynamics Ⅰ: explicit methods[J]. Computers & Structures, 1989, 32: 1371-1386.
    [2] SUBBARAJ K, DOKAINISH M A. A survey of direct time-integration methods in computational structural dynamics Ⅱ: implicit methods[J]. Computers & Structures, 1989, 32: 1387-1401.
    [3] KRIEG R D. Unconditional stability in numerical time integration methods[J]. Journal of Applied Mechanics, 1973, 40: 417-421. doi: 10.1115/1.3422999
    [4] CHUNG J, LEE J M. A new family of explicit time integration methods for linear and non-linear structural dynamics[J]. International Journal for Numerical Methods in Engineering, 1994, 37 (23): 3961-3976. doi: 10.1002/nme.1620372303
    [5] KIM W. A simple explicit single step time integration algorithm for structural dynamics[J]. International Journal for Numerical Methods in Engineering, 2019, 119 (5): 383-403. doi: 10.1002/nme.6054
    [6] NOH G, BATHE K J. An explicit time integration scheme for the analysis of wave propagations[J]. Computers & Structures, 2013, 129: 178-193.
    [7] LI J, YU K, ZHAO R. Two third-order explicit integration algorithms with controllable numerical dissipation for second-order nonlinear dynamics[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 395: 114945. doi: 10.1016/j.cma.2022.114945
    [8] HOUBOLT J C. A recurrence matrix solution for the dynamic response of elastic aircraft[J]. Journal of the Aeronautical Sciences, 1950, 17: 540-550. doi: 10.2514/8.1722
    [9] WILSON E L. A Computer Program for the Dynamic Stress Analysis of Underground Structures[M]. Berkeley: University of California, 1968.
    [10] NEWMARK N. A method of computation for structural dynamics[J]. Journal of the Engineering Mechanics Division, 1959, 85 (3): 67-94. doi: 10.1061/JMCEA3.0000098
    [11] HILBER H M, HUGHES T J R, TAYLOR R L. Improved numerical dissipation for time integration algorithms in structural dynamics[J]. Earthquake Engineering & Structural Dynamics, 1977, 5 (3): 283-292.
    [12] WOOD W L, BOSSAK M, ZIENKIEWICZ O C. An alpha modification of Newmark's method[J]. International Journal for Numerical Methods in Engineering, 1980, 15 (10): 1562-1566. doi: 10.1002/nme.1620151011
    [13] 邵慧萍, 蔡承文. 结构动力学方程数值积分的三参数算法[J]. 应用力学学报, 1988, 5 (4): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX198804009.htm

    SHAO Huiping, CAI Chengwen. A three parameters algorithm fornumerical integration of structural dynamic equations[J]. Chinese Journal of Applied Mechanics, 1988, 5 (4): 76-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX198804009.htm
    [14] 于开平, 邹经湘. 结构动力响应数值算法耗散和超调特性设计[J]. 力学学报, 2005, 37 (4): 467-476. doi: 10.3321/j.issn:0459-1879.2005.04.012

    YU Kaiping, ZOU Jingxiang. Two time integration algorithms with numerical dissipation and without overshoot for structural dynamic[J]. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37 (4): 467-476. (in Chinese) doi: 10.3321/j.issn:0459-1879.2005.04.012
    [15] BATHE K J, BAIG M M. On a composite implicit time integration procedure for nonlinear dynamics[J]. Computers & Structures, 2005, 83 (32): 2513-2524.
    [16] WEN W, WEI K, LEI H, et al. A novel sub-step composite implicit time integration scheme for structural dynamics[J]. Computers & Structures, 2017, 182: 176-186.
    [17] 邢誉峰, 郭静. 与结构动特性协同的自适应Newmark方法[J]. 力学学报, 2012, 44 (5): 904-911. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201205013.htm

    XING Yufeng, GUO Jing. A self-adaptive Newmark method with parameters dependent upon structural dynamic characteristics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44 (5): 904-911. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201205013.htm
    [18] 陈元昌, 张邦基, 张农, 等. 结构动力响应分析的三阶显隐式时程积分方法[J]. 应用力学学报, 2016, 33 (2): 195-200. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201602004.htm

    CHEN Yuanchang, ZHANG Bangji, ZHANG Nong, et al. A three-order explicit-implicit time-integration scheme for dynamic response analysis[J]. Chinese Journal of Applied Mechanics, 2016, 33 (2): 195-200. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201602004.htm
    [19] 苏成, 罗俊哲, 许秩. 多孔结构多尺度随机振动分析的渐近均匀化-时域显式法[J]. 应用数学和力学, 2023, 44 (1): 1-11. doi: 10.21656/1000-0887.430116

    SU Cheng, LUO Junzhe, XU Zhi. An asymptotic-homogenization explicit time-domain method for random multiscale vibration analysis of porous material structures[J]. Applied Mathematics and Mechanics, 2023, 44 (1): 1-11. (in Chinese) doi: 10.21656/1000-0887.430116
    [20] 刘凡, 李利祥, 赵岩. 移动荷载作用下具有不确定参数桥梁动力响应分析[J]. 应用数学和力学, 2023, 44 (3): 241-247. doi: 10.21656/1000-0887.430148

    LIU Fan, LI Lixiang, ZHAO Yan. Dynamic responses analysis of bridges with uncertain parameters under moving loads[J]. Applied Mathematics and Mechanics, 2023, 44 (3): 241-247. (in Chinese) doi: 10.21656/1000-0887.430148
    [21] BATHE K J, NOH G. Insight into an implicit time integration scheme for structural dynamics[J]. Computers & Structures, 2012, 98: 1-6.
    [22] LI J, YU K. Development of composite sub-step explicit dissipative algorithms with truly self-starting property[J]. Nonlinear Dynamics, 2021, 103 (2): 1911-1936.
  • 加载中
图(14)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  47
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-23
  • 修回日期:  2023-12-13
  • 刊出日期:  2024-07-01

目录

    /

    返回文章
    返回