留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非线性sine-Gordon方程的连续时空混合有限元方法

王媋瑗 李宏 何斯日古楞

王媋瑗, 李宏, 何斯日古楞. 非线性sine-Gordon方程的连续时空混合有限元方法[J]. 应用数学和力学, 2024, 45(4): 490-501. doi: 10.21656/1000-0887.440293
引用本文: 王媋瑗, 李宏, 何斯日古楞. 非线性sine-Gordon方程的连续时空混合有限元方法[J]. 应用数学和力学, 2024, 45(4): 490-501. doi: 10.21656/1000-0887.440293
WANG Chunyuan, LI Hong, HE Siriguleng. A Continuous Space-Time Mixed Finite Element Method for Sine-Gordon Equations[J]. Applied Mathematics and Mechanics, 2024, 45(4): 490-501. doi: 10.21656/1000-0887.440293
Citation: WANG Chunyuan, LI Hong, HE Siriguleng. A Continuous Space-Time Mixed Finite Element Method for Sine-Gordon Equations[J]. Applied Mathematics and Mechanics, 2024, 45(4): 490-501. doi: 10.21656/1000-0887.440293

非线性sine-Gordon方程的连续时空混合有限元方法

doi: 10.21656/1000-0887.440293
基金项目: 

国家自然科学基金 12161063

国家自然科学基金 12161034

内蒙古自然科学基金 2021MS01018

内蒙古自治区高等学校创新团队发展计划 NMGIRT2207

详细信息
    作者简介:

    王媋瑗(1996—), 女, 硕士生(E-mail:cywang0524@163.com)

    通讯作者:

    李宏(1973—), 女, 教授, 博士生导师(通讯作者. E-mail: smslh@imu.edu.cn)

  • 中图分类号: O357.4+1

A Continuous Space-Time Mixed Finite Element Method for Sine-Gordon Equations

  • 摘要: 该文将混合有限元方法和连续时空有限元方法相结合, 构造了sine-Gordon方程的连续时空混合有限元离散格式, 引入独立变量p=ut来求解, 并将时间变量和空间变量都用有限元方法处理. 此格式可以将方程降阶, 降低有限元空间的光滑性要求, 同时在时间和空间两个方向都能发挥有限元方法的优势, 获得时空高精度的数值解. 理论分析中严格证明了数值解的稳定性, 给出了up的误差估计. 最后通过数值算例的结果展示了格式的有效性和可行性.
  • 图  1  线性基函数, uuhk的对比

    Figure  1.  Comparison between u and uhk with linear basis function

    图  2  线性基函数, pphk的对比

    Figure  2.  Comparison between p and phk with linear basis function

    图  3  二次基函数, uuhk的对比(t=T)

    Figure  3.  Comparison between u and uhk with the quadratic basis function(t=T)

    图  4  二次基函数, pphk的对比(t=T)

    Figure  4.  Comparison between p and phk with the quadratic basis function(t=T)

    图  5  线性基函数, t=T的收敛阶对比

    Figure  5.  Comparison of convergence rates at time t=T for the linear basis function

    图  6  二次基函数, t=T的收敛阶对比

    Figure  6.  Comparison of convergence rates at time t=T for the quadratic basis function

    表  1  用线性基函数和k=1/200时, 关于空间方向的误差和收敛阶

    Table  1.   Error and convergence rates in the space direction with the linear basis function and k=1/200

    h p-phka rate log2(k) u-uhka rate log2(k)
    1/4 4.739 6E-3 1.781 9E-3
    1/8 1.330 1E-3 1.833 3 4.985 6E-4 1.837 6
    1/16 3.409 2E-4 1.964 0 1.278 7E-4 1.963 1
    1/32 8.578 9E-5 1.990 6 3.217 3E-5 1.990 8
    下载: 导出CSV

    表  2  用线性基函数和k=1/200时, 关于时间方向的误差和收敛阶

    Table  2.   Error and convergence rates in the time direction with the linear basis function and k=1/200

    h p-phka rate log2(k) u-uhka rate log2(k)
    1/4 8.072 5E-4 3.590 1E-4
    1/8 2.537 4E-4 1.669 7 9.153 6E-5 1.971 6
    1/16 6.484 0E-5 1.968 4 2.293 7E-5 1.996 7
    1/32 1.664 3E-5 1.962 0 5.793 9E-6 1.985 0
    下载: 导出CSV

    表  3  线性基函数, t=T时刻的误差和收敛阶

    Table  3.   Error and convergence rates at time t=T for the linear basis function

    k(k=10h) 1/4 1/8 1/16 1/32
    u-uCNb 4.035 9E-3 1.128 9E-3 2.892 0E-4 7.272 5E-5
    rate log2(k) 1.837 9 1.964 8 1.991 5
    u-uSTb 1.782 0E-3 4.985 7E-4 1.278 7E-4 3.217 2E-5
    rate log2(k) 1.837 6 1.963 1 1.990 8
    p-pCNb 8.669 2E-3 2.375 9E-3 6.010 2E-4 1.505 1E-4
    rate log2(k) 1.867 4 1.982 9 1.997 5
    p-pSTb 8.497 0E-3 2.365 9E-3 6.001 4E-4 1.504 6E-4
    rate log2(k) 1.826 4 1.968 9 1.995 7
    下载: 导出CSV

    表  4  二次基函数, t=T时刻的误差和收敛阶

    Table  4.   Error and convergence rates at time t=T for the quadratic basis function

    k(k=10h) 1/2 1/4 1/8 1/16
    u-uCNb 3.068 6E-3 6.695 7E-4 1.617 0E-4 4.003 1E-5
    rate log2(k) 2.196 3 2.049 9 2.014 2
    u-uSTb 7.529 1E-6 7.082 6E-7 8.170 7E-8 9.852 2E-9
    rate log2(k) 3.410 1 3.115 7 3.052 0
    p-pCNb 3.538 7E-3 5.569 8E-4 1.221 2E-4 1.880 6E-5
    rate log2(k) 2.667 5 2.189 3 2.699 0
    p-pSTb 7.511 3E-5 8.248 3E-6 7.801 6E-7 7.875 8E-8
    rate log2(k) 3.186 9 3.402 3 3.308 2
    下载: 导出CSV
  • [1] JIWARI R, PANDIT S, MITTAL R C. Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method[J]. Computer Physics Communications, 2012, 183(3): 600-616. doi: 10.1016/j.cpc.2011.12.004
    [2] XIA Hong, TENG Fei, LUO Zhendong. A reduced-order extrapolating finite difference iterative scheme for 2D generalized nonlinear sine-Gordon equation[J]. Applied and Computational Mathematics, 2018, 7(1): 19-25. doi: 10.11648/j.acm.20180701.13
    [3] GUO Benyu, PASCUAL P J, RODRIGUEZ J, et al. Numerical solution of the sine-Gordon equation[J]. Applied Mathematics and Computation, 1986, 18(1): 1-14. doi: 10.1016/0096-3003(86)90025-1
    [4] ARGYRIS J, HAASE M, HEINRICH J C. Finite element approximation to two-dimensional sine-Gordon solitons[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 86(1): 1-26. doi: 10.1016/0045-7825(91)90136-T
    [5] LIU Yang, LI Hong. Numerical solutions of H1-Galerkin mixed finite element method for a damped sine-Gordon equation[J]. Applied Mathematics, 2009, 22(3): 579-588.
    [6] 常晓慧, 李宏, 何斯日古楞. Sobolev方程的H1-Galerkin时空混合有限元分裂格式[J]. 高校应用数学学报: A辑, 2020, 35(4): 470-486. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYZ202004010.htm

    CHANG Xiaohui, LI Hong, HE Siriguleng. H1-Galerkin space time mixed finite element splitting scheme for one-dimensional Sobolev equation[J]. Applied Mathematics: A Journal of Chinese Universities, 2020, 35(4): 470-486. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYZ202004010.htm
    [7] 李宏, 黄春霞, 何斯日古楞, 等. Sine-Gordon方程的三次配点法[J]. 工程数学学报, 2014, 31(2): 254-266. doi: 10.3969/j.issn.1005-3085.2014.02.011

    LI Hong, HUANG Chunxia, HE Siriguleng, et al. A qualocation method for sine-Gordon equation[J]. Chinese Journal of Engineering Mathematics, 2014, 31(2): 254-266. (in Chinese) doi: 10.3969/j.issn.1005-3085.2014.02.011
    [8] 许秋滨, 张鲁明. 二维广义非线性sine-Gordon方程的一个ADI格式[J]. 应用数学学报, 2007, 30(5): 836-846. doi: 10.3321/j.issn:0254-3079.2007.05.009

    XU Qiubin, ZHANG Luming. An ADI scheme for the generalized nonlinear sine-Gordon equation in two dimensions[J]. Acta Mathematicae Applicatae Sinica, 2007, 30(5): 836-846. (in Chinese) doi: 10.3321/j.issn:0254-3079.2007.05.009
    [9] LAI Huilin, MA Changfeng. An implicit scheme of lattice Boltzmann method for sine-Gordon equation[J]. Chinese Physics Letters, 2008, 25(6): 2118-2120. doi: 10.1088/0256-307X/25/6/053
    [10] MA Limin, WU Zongmin. A numerical method for one-dimensional nonlinear sine-Gordon equation using multiquadric quasi-interpolation[J]. Chinese Physics B, 2009, 18(8): 3099-3013. doi: 10.1088/1674-1056/18/8/001
    [11] HASHEMI M S. Numerical study of the one-dimensional coupled nonlinear sine-Gordon equations by a novel geometric meshless method[J]. Engineering With Computers, 2021, 37(4): 3397-3407. doi: 10.1007/s00366-020-01001-2
    [12] 石东洋, 张斐然. Sine-Gordon方程的一类低阶非协调有限元分析[J]. 计算数学, 2011, 33(3): 289-297. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX201103008.htm

    SHI Dongyang, ZHANG Feiran. A class of low order nonconforming finite element analysis for Sine-Gordon equation[J]. Mathematica Numerica Sinica, 2011, 33(3): 289-297. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSX201103008.htm
    [13] ADAMS R A. Sobolev Spaces[M]. New York: Academic Press, 1975.
    [14] 罗振东. 混合有限元法基础及其应用[M]. 北京: 科学出版社, 2006.

    LUO Zhendong. Fundamentals and Applications of Mixed Finite Element Method[M]. Beijing: Science Press, 2006. (in Chinese)
    [15] AZIZ A K, MONK P. Continuous finite elements in space and time for the heat equation[J]. Mathematics of Computation, 1989, 52(186): 255-274. doi: 10.1090/S0025-5718-1989-0983310-2
    [16] LUO Zhendong, CHEN Goong. Proper Orthogonal Decomposition Methods for Partial Differential Equations[M]. San Diego: Academic Press of Elsevier, 2018.
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  67
  • HTML全文浏览量:  24
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-27
  • 修回日期:  2023-11-28
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回