留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

断裂相场模型的三维自适应有限元方法

裘沙沙 刘星泽 宁文杰 姚伟岸 段庆林

裘沙沙, 刘星泽, 宁文杰, 姚伟岸, 段庆林. 断裂相场模型的三维自适应有限元方法[J]. 应用数学和力学, 2024, 45(4): 391-399. doi: 10.21656/1000-0887.440299
引用本文: 裘沙沙, 刘星泽, 宁文杰, 姚伟岸, 段庆林. 断裂相场模型的三维自适应有限元方法[J]. 应用数学和力学, 2024, 45(4): 391-399. doi: 10.21656/1000-0887.440299
QIU Shasha, LIU Xingze, NING Wenjie, YAO Weian, DUAN Qinglin. A Three-Dimensional Adaptive Finite Element Method for Phase-Field Models of Fracture[J]. Applied Mathematics and Mechanics, 2024, 45(4): 391-399. doi: 10.21656/1000-0887.440299
Citation: QIU Shasha, LIU Xingze, NING Wenjie, YAO Weian, DUAN Qinglin. A Three-Dimensional Adaptive Finite Element Method for Phase-Field Models of Fracture[J]. Applied Mathematics and Mechanics, 2024, 45(4): 391-399. doi: 10.21656/1000-0887.440299

断裂相场模型的三维自适应有限元方法

doi: 10.21656/1000-0887.440299
基金项目: 

中央高校基本科研业务费 DUT21GF304

详细信息
    作者简介:

    裘沙沙(1990—),女,博士生(E-mail: 1065955826@qq.com)

    通讯作者:

    段庆林(1979—),男,副教授,博士,博士生导师(通讯作者. E-mail: qinglinduan@dlut.edu.cn)

  • 中图分类号: O302

A Three-Dimensional Adaptive Finite Element Method for Phase-Field Models of Fracture

  • 摘要: 发展了鲁棒的预测-校正算法,建立了断裂相场模型的三维自适应有限元分析.相场模型可以方便地处理复杂的断裂问题,避免了额外追踪裂纹路径且没有网格依赖性.然而,三维相场建模往往需要非常精细的网格,这降低了求解效率.针对该问题,基于交错求解方案发展了预测-校正网格自适应细化算法,实现了三维结构裂纹扩展的高精度分析.数值算例表明,所发展的方法能够准确合理地描述结构的裂纹扩展,同时网格可以在裂纹扩展的路径上自适应地细化.
  • 图  1  自适应网格细化示意图

    Figure  1.  Schematic diagram of the adaptive mesh refinement

    图  2  预测-校正算法

    Figure  2.  The predictor-corrector algorithm

    图  3  单槽方板拉伸

    Figure  3.  Tension of the single groove square plate

    图  4  单槽方板拉伸的网格比较

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  4.  Meshes comparison for tension of the single groove square plate

    图  5  单槽带孔平板拉伸

    Figure  5.  Tension of the single groove plate with a hole

    图  6  双槽方板拉伸

    Figure  6.  Tension of the double groove square plate

    图  7  不同细化等级的断裂相场和自适应网格

    Figure  7.  The fracture phase field and adaptive meshes with different refinement levels

    图  8  rmax=3时的断裂相场

    Figure  8.  The fracture phase field for rmax=3

    图  9  rmax=3时的自适应网格和裂纹样式

    Figure  9.  Adaptive meshes and crack patterns for rmax=3

    表  1  单槽方板拉伸的节点数量、网格数量和CPU时间比较

    Table  1.   Comparison of node number, mesh number, and CPU time for tension of the single groove square plate

    node number mesh number CPU time t/min
    preformed local refinement meshes 21 852 17 775 438
    adaptive initial state
    adaptive final state
    4 206
    12 148
    2 624
    8 756
    55
    下载: 导出CSV
  • [1] 唐红梅, 周福川, 陈松, 等. 高烈度下双裂缝主控结构面危岩的断裂破坏机制分析[J]. 应用数学和力学, 2021, 42(6): 645-655. doi: 10.21656/1000-0887.410187

    TANG Hongmei, ZHOU Fuchuan, CHEN Song, et al. Analysis of the fracture failure mechanism of dangerous rocks with double crack main control structural planes under high intensity[J]. Applied Mathematics and Mechanics, 2021, 42(6): 645-655. (in Chinese) doi: 10.21656/1000-0887.410187
    [2] 肖刘. 某型飞机机翼断裂分析[J]. 装备制造技术, 2013, 5: 132-133. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJX201305051.htm

    XIAO Liu. Analysis of wing fracture of a certain type of aircraft[J]. Equipment Manufacturing Technology, 2013, 5: 132-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXJX201305051.htm
    [3] GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 1920, A221(4): 163-198.
    [4] FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics & Physics of Solids, 1998, 46(8): 1319-1342.
    [5] BOURDIN B, FRANCFORT G A, MARIGO J J. Numerical experiments in revisited brittle fracture[J]. Journal of the Mechanics & Physics of Solids, 2000, 48(4): 797-826.
    [6] MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45/48): 2765-2778.
    [7] AMBATI M, GERASIMOV T, LORENZIS L D. A review on phase-field models of brittle fracture and a new fast hybrid formulation[J]. Computational Mechanics, 2015, 55(2): 383-405. doi: 10.1007/s00466-014-1109-y
    [8] WU J Y, HUANG Y, ZHOU H, et al. Three-dimensional phase-field modeling of mode Ⅰ+Ⅱ/Ⅲ failure in solids[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113537. doi: 10.1016/j.cma.2020.113537
    [9] MOLNAR G, GRAVOUIL A. 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture[J]. Finite Elements in Analysis and Design, 2017, 130: 27-38. doi: 10.1016/j.finel.2017.03.002
    [10] BURKE S, ORTNER C, SULI E. An adaptive finite element approximation of a variational model of brittle fracture[J]. SIAM Journal on Numerical Analysis, 2010, 48(3): 980-1012. doi: 10.1137/080741033
    [11] ARTINA M, FORNASIER M, MICHELETTI S, et al. Anisotropic mesh adaptation for crack detection in brittle materials[J]. SIAM Journal on Scientific Computing, 2015, 37(4): B633-B659. doi: 10.1137/140970495
    [12] HIRSHIKESH, JANSARI C, KANNAN K, et al. Adaptive phase field method for quasi-static brittle fracture based on recovery based error indicator and quadtree decomposition[J]. Engineering Fracture Mechanics, 2019, 220: 106599. doi: 10.1016/j.engfracmech.2019.106599
    [13] HEISTER T, WHEELER M F, WICK T. A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 290: 466-495. doi: 10.1016/j.cma.2015.03.009
    [14] LEE S, WHEELER M F, WICK T. Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 305: 111-132. doi: 10.1016/j.cma.2016.02.037
    [15] MOËS N, STOLZ C, BERNARD P E, et al. A level set based model for damage growth: the thick level set approach[J]. International Journal for Numerical Methods in Engineering, 2011, 86(3): 358-380. doi: 10.1002/nme.3069
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  135
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-03
  • 修回日期:  2024-03-14
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回