A Three-Dimensional Adaptive Finite Element Method for Phase-Field Models of Fracture
-
摘要: 发展了鲁棒的预测-校正算法,建立了断裂相场模型的三维自适应有限元分析.相场模型可以方便地处理复杂的断裂问题,避免了额外追踪裂纹路径且没有网格依赖性.然而,三维相场建模往往需要非常精细的网格,这降低了求解效率.针对该问题,基于交错求解方案发展了预测-校正网格自适应细化算法,实现了三维结构裂纹扩展的高精度分析.数值算例表明,所发展的方法能够准确合理地描述结构的裂纹扩展,同时网格可以在裂纹扩展的路径上自适应地细化.Abstract: A robust predictor-corrector algorithm was developed and a 3D adaptive finite element analysis for the fracture phase-field model was established. This model can deal with complex fracture problems conveniently, avoiding extra tracking of crack paths and without mesh-dependency. However, the 3D phase-field modeling usually requires extremely fine meshes, which brings reduction of the solving efficiency. Aimed at this problem, the predictor-corrector adaptive mesh refinement algorithm was developed based on a staggered solution scheme, to achieve high-precision analysis of crack propagation in 3D structures. Numerical examples show that, the developed method can accurately and reasonably describe crack propagation in structures, and the meshes can be adaptively refined along the crack propagation paths.
-
Key words:
- fracture mechanics /
- phase-field model /
- adaptive refinement /
- finite element method /
- 3D crack
-
表 1 单槽方板拉伸的节点数量、网格数量和CPU时间比较
Table 1. Comparison of node number, mesh number, and CPU time for tension of the single groove square plate
node number mesh number CPU time t/min preformed local refinement meshes 21 852 17 775 438 adaptive initial state
adaptive final state4 206
12 1482 624
8 75655 -
[1] 唐红梅, 周福川, 陈松, 等. 高烈度下双裂缝主控结构面危岩的断裂破坏机制分析[J]. 应用数学和力学, 2021, 42(6): 645-655. doi: 10.21656/1000-0887.410187TANG Hongmei, ZHOU Fuchuan, CHEN Song, et al. Analysis of the fracture failure mechanism of dangerous rocks with double crack main control structural planes under high intensity[J]. Applied Mathematics and Mechanics, 2021, 42(6): 645-655. (in Chinese) doi: 10.21656/1000-0887.410187 [2] 肖刘. 某型飞机机翼断裂分析[J]. 装备制造技术, 2013, 5: 132-133. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJX201305051.htmXIAO Liu. Analysis of wing fracture of a certain type of aircraft[J]. Equipment Manufacturing Technology, 2013, 5: 132-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXJX201305051.htm [3] GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 1920, A221(4): 163-198. [4] FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem[J]. Journal of the Mechanics & Physics of Solids, 1998, 46(8): 1319-1342. [5] BOURDIN B, FRANCFORT G A, MARIGO J J. Numerical experiments in revisited brittle fracture[J]. Journal of the Mechanics & Physics of Solids, 2000, 48(4): 797-826. [6] MIEHE C, HOFACKER M, WELSCHINGER F. A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(45/48): 2765-2778. [7] AMBATI M, GERASIMOV T, LORENZIS L D. A review on phase-field models of brittle fracture and a new fast hybrid formulation[J]. Computational Mechanics, 2015, 55(2): 383-405. doi: 10.1007/s00466-014-1109-y [8] WU J Y, HUANG Y, ZHOU H, et al. Three-dimensional phase-field modeling of mode Ⅰ+Ⅱ/Ⅲ failure in solids[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 373: 113537. doi: 10.1016/j.cma.2020.113537 [9] MOLNAR G, GRAVOUIL A. 2D and 3D Abaqus implementation of a robust staggered phase-field solution for modeling brittle fracture[J]. Finite Elements in Analysis and Design, 2017, 130: 27-38. doi: 10.1016/j.finel.2017.03.002 [10] BURKE S, ORTNER C, SULI E. An adaptive finite element approximation of a variational model of brittle fracture[J]. SIAM Journal on Numerical Analysis, 2010, 48(3): 980-1012. doi: 10.1137/080741033 [11] ARTINA M, FORNASIER M, MICHELETTI S, et al. Anisotropic mesh adaptation for crack detection in brittle materials[J]. SIAM Journal on Scientific Computing, 2015, 37(4): B633-B659. doi: 10.1137/140970495 [12] HIRSHIKESH, JANSARI C, KANNAN K, et al. Adaptive phase field method for quasi-static brittle fracture based on recovery based error indicator and quadtree decomposition[J]. Engineering Fracture Mechanics, 2019, 220: 106599. doi: 10.1016/j.engfracmech.2019.106599 [13] HEISTER T, WHEELER M F, WICK T. A primal-dual active set method and predictor-corrector mesh adaptivity for computing fracture propagation using a phase-field approach[J]. Computer Methods in Applied Mechanics and Engineering, 2015, 290: 466-495. doi: 10.1016/j.cma.2015.03.009 [14] LEE S, WHEELER M F, WICK T. Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 305: 111-132. doi: 10.1016/j.cma.2016.02.037 [15] MOËS N, STOLZ C, BERNARD P E, et al. A level set based model for damage growth: the thick level set approach[J]. International Journal for Numerical Methods in Engineering, 2011, 86(3): 358-380. doi: 10.1002/nme.3069