留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

D-S理论和Markov链组合的桥梁性能退化预测研究

杨国俊 田里 唐光武 毛建博 杜永峰

杨国俊, 田里, 唐光武, 毛建博, 杜永峰. D-S理论和Markov链组合的桥梁性能退化预测研究[J]. 应用数学和力学, 2024, 45(4): 416-428. doi: 10.21656/1000-0887.440343
引用本文: 杨国俊, 田里, 唐光武, 毛建博, 杜永峰. D-S理论和Markov链组合的桥梁性能退化预测研究[J]. 应用数学和力学, 2024, 45(4): 416-428. doi: 10.21656/1000-0887.440343
YANG Guojun, TIAN Li, TANG Guangwu, MAO Jianbo, DU Yongfeng. Research on Bridge Performance Degradation Prediction Based on Combination of the D-S Theory and the Markov Chain[J]. Applied Mathematics and Mechanics, 2024, 45(4): 416-428. doi: 10.21656/1000-0887.440343
Citation: YANG Guojun, TIAN Li, TANG Guangwu, MAO Jianbo, DU Yongfeng. Research on Bridge Performance Degradation Prediction Based on Combination of the D-S Theory and the Markov Chain[J]. Applied Mathematics and Mechanics, 2024, 45(4): 416-428. doi: 10.21656/1000-0887.440343

D-S理论和Markov链组合的桥梁性能退化预测研究

doi: 10.21656/1000-0887.440343
(我刊编委唐光武来稿)
基金项目: 

国家自然科学基金 52168042

甘肃省科技计划 22JR5RA250

甘肃省优秀研究生“创新之星”项目 2023CXZX-460

详细信息
    通讯作者:

    杨国俊(1988—),男,副教授,博士(通讯作者. E-mail: yanggj403@163.com)

  • 中图分类号: U448.33;O29

Research on Bridge Performance Degradation Prediction Based on Combination of the D-S Theory and the Markov Chain

(Contributed by TANG Guangwu, M. AMM Editorial Board)
  • 摘要: 为准确预测桥梁性能退化,考虑到数据随机性和微小扰动发生状态跳跃,提出了一种D-S(Dempster-Shafer)证据理论和Markov链组合的桥梁性能退化组合预测模型和性能退化率的概念.该模型基于指数平滑(exponential smoothing, ES)方法获得新的预测数据序列,并利用Markov链和D-S理论不断进行优化,从而实现桥梁性能退化的组合预测.实际工程的应用结果表明:性能退化率可以直观地表征在梁性能退化的速度.其次,该模型的平均相对误差为1.54%,较于回归、灰色和模糊加权Markov链模型,精度分别提高了1.11%,0.88%和2.8%,而后验差比值为0.242,小于0.35;模型的标准差为9.021,相比其他模型分别减小了3.978,3.405和7.500,而变异系数为0.109,均小于其他模型,验证了组合预测模型在精度和稳定性方面的优越性,可为在役桥梁结构性能退化预测与维护提供理论基础.
    1)  (我刊编委唐光武来稿)
  • 图  1  D-S理论和Markov链组合的桥梁性能退化预测流程

    Figure  1.  The combination prediction process of bridge performance degradation based on the D-S theory and the Markov chain

    图  2  不同平滑系数下绝对误差平方和对比

    Figure  2.  The absolute error square sum comparison under different smoothing coefficients

    图  3  损失函数值曲线

    Figure  3.  The loss function value curve

    图  4  状态集合

    Figure  4.  The state collection

    图  5  桥梁服役16~20年不同模型的相对误差

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  5.  Relative errors of different models for bridges in service for 16~20 years

    图  6  桥梁服役16~20年不同模型的桥梁技术状况

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  6.  Bridge technical conditions from different models in service for 16~20 years

    图  7  不同模型的平均相对误差比较

    Figure  7.  The average relative error comparison between different models

    图  8  不同模型的后验差比值C对比

    Figure  8.  Comparison of posterior error ratio C values of different models

    图  9  桥梁服役35年预测曲线平滑比较

    Figure  9.  The smooth comparison of prediction curves of bridges in service for 35 years

    图  10  不同模型稳定性对比

    Figure  10.  The comparison of stability of different models

    图  11  桥梁性能退化预测及退化率

    Figure  11.  The bridge performance degradation prediction and degradation rates

    图  12  桥梁性能退化预测曲线

    Figure  12.  The bridge performance degradation prediction curve

    图  13  使用年限内性能退化及维护

    Figure  13.  Performance degradation and maintenance of bridges during service lives

    表  1  预测模型精度等级

    Table  1.   Prediction model accuracy levels

    accuracy class average relative error Δ posterior difference ratio C
    class 1 0.01 C≤0.35
    class 2 0.05 0.35 < C≤0.50
    class 3 0.10 0.50 < C≤0.60
    class 4 0.20 C>0.65
    下载: 导出CSV

    表  2  基于ES法预测桥梁技术状况

    Table  2.   Prediction of bridge technical conditions based on the ES method

    age m/a scores Sm(1) Sm(2) Sm(3) am bm cm prediction relative error R/%
    1 100 100 100 100 100 0 0 100 0
    2 98.1 99.088 0 99.562 2 99.789 9 98.367 2 -0.998 1 -0.105 1 100.00 1.94
    3 96.5 97.845 8 98.738 3 99.285 1 96.607 4 -1.609 6 -0.147 3 97.264 0.79
    4 95.8 96.863 8 97.838 6 98.590 8 95.666 5 -1.405 4 -0.094 8 94.851 -0.99
    5 95.2 96.065 2 96.987 3 97.821 1 95.054 6 -1.052 0 -0.037 6 94.166 -1.09
    6 94.3 95.217 9 96.138 0 97.013 2 94.252 9 -0.951 3 -0.019 1 93.965 -0.36
    7 93.4 94.345 3 95.277 5 96.180 1 93.383 5 -0.927 8 -0.012 6 93.282 -0.13
    8 92.1 93.267 6 94.312 7 95.283 8 92.148 2 -1.133 3 -0.031 6 92.443 0.37
    9 90.4 91.891 1 93.150 4 94.259 7 90.482 0 -1.502 9 -0.063 8 90.983 0.65
    10 89.3 90.647 4 91.948 9 93.150 5 89.245 9 -1.428 5 -0.042 6 88.915 -0.43
    11 88.1 89.424 6 90.737 3 91.992 2 88.054 3 -2.013 7 -0.024 6 87.775 -0.37
    12 87.8 88.644 8 89.732 9 90.907 7 87.643 5 -0.807 3 0.037 0 86.016 -2.03
    13 86.6 87.663 3 88.739 5 89.867 0 86.638 4 -0.876 9 0.021 9 86.873 0.32
    14 85.4 86.576 9 87.701 5 88.827 5 85.453 9 -1.034 6 0.000 7 85.783 0.45
    15 84.6 85.628 0 86.706 2 87.809 3 84.574 7 -0.938 7 0.010 6 84.420 -0.21
    16 82.8 - - - - - - 83.647 1.02
    17 81.1 - - - - - - 82.740 2.02
    18 80.2 - - - - - - 81.854 2.06
    19 79.1 - - - - - - 80.990 2.39
    20 78.0 - - - - - - 80.146 2.75
    下载: 导出CSV

    表  3  基本概率数

    Table  3.   Basic probabilities

    serial number 1 2 3 4 5 6 7 8
    relative error R/% 0 1.94 0.79 -0.99 -1.09 -0.36 -0.13 0.37
    f(a) 0 0 0 0 0 0 0 0
    f(ab) 0 0 0 0 0.18 0 0 0
    f(b) 1 0 0 1 0.82 1 1 0.26
    f(bc) 0 0 0.42 0 0 0 0 0.74
    f(c) 0 1 0.58 0 0 0 0 0
    serial number 9 10 11 12 13 14 15
    relative error R/% 0.65 -0.43 -0.37 -2.03 0.32 0.45 -0.21
    f(a) 0 0 0 1 0 0 0
    f(ab) 0 0 0 0 0 0 0
    f(b) 0 1 1 0 0.36 0.1 1
    f(bc) 0.7 0 0 0 0.64 0.9 0
    f(c) 0.3 0 0 0 0 0 0
    下载: 导出CSV
  • [1] 黄侨, 任远, 许翔, 等. 大跨径缆索承重桥梁状态评估的研究现状与发展[J]. 哈尔滨工业大学学报, 2017, 49(9): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201709001.htm

    HUANG Qiao, REN Yuan, XU Xiang, et al. Research progress of condition evaluation for large span cable supported bridges[J]. Journal of Harbin Institute of Technology, 2017, 49(9): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201709001.htm
    [2] 占玉林, 斯睿哲, 臧亚美. 混凝土桥梁耐久性2020年度研究进展[J]. 土木与环境工程学报(中英文), 2021, 43(S1): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN2021S1010.htm

    ZHAN Yulin, SI Ruizhe, ZANG Yamei. State-of-the-art review of the durability of concrete bridges in 2020[J]. Journal of Civil and Environmental Engineering, 2021, 43(S1): 100-106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN2021S1010.htm
    [3] 彭容新, 邱文亮, 滕飞. 寒区近海混凝土桥梁性能衰退机理与损伤行为评估方法[J]. 中国公路学报, 2021, 34(12): 129-146. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202112011.htm

    PENG Rongxin, QIU Wenliang, TENG Fei. Performance degradation mechanism and damage behavior evaluation method of concrete bridge in cold region marine environment[J]. China Journal of Highway and Transport, 2021, 34(12): 129-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202112011.htm
    [4] 李宏男, 董皓璐, 李超. 基于全寿命周期抗震性能的桥梁结构维修决策方法研究进展[J]. 中国公路学报, 2020, 33(2): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002001.htm

    LI Hongnan, DONG Haolu, LI Chao. Research progress on life-cycle performance-based seismic maintenance decision method for bridge structures[J]. China Journal of Highway and Transport, 2020, 33(2): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202002001.htm
    [5] FRANGOPOL D M, SABATINO D, DONG Y. Bridge life-cycle performance and cost: analysis, prediction, optimization and decision-making[J]. Structure and Infrastructure Engineering, 2017, 13(10): 1239-1257. doi: 10.1080/15732479.2016.1267772
    [6] 包龙生, 郝博, 周诗梦, 等. 基于中心点白化权函数的桥梁技术状况评定[J]. 沈阳建筑大学学报(自然科学版), 2019, 35(1): 101-108. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201901013.htm

    BAO Longsheng, HAO Bo, ZHOU Shimeng, et al. Bridge technique condition assessment based on central point triangle whiten weight function[J]. Journal of Shenyang Jianzhu University (Natural Science), 2019, 35 (1): 101-108. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201901013.htm
    [7] 韩晋, 杨岳, 陈峰, 等. 基于非等时距加权灰色模型与神经网络的组合预测算法[J]. 应用数学和力学, 2013, 34(4): 408-419. doi: 10.3879/j.issn.1000-0887.2013.04.009

    HAN Jin, YANG Yue, CHEN Feng, et al. Combination forecasting algorithm based on non-equal interval weighted grey model and neural network[J]. Applied Mathematics and Mechanics, 2013, 34(4): 408-419. (in Chinese) doi: 10.3879/j.issn.1000-0887.2013.04.009
    [8] QIU Y J, AN S K, RAHMAN A, et al. Evaluation and optimization of bridge deck waterproof bonding system using multi-objective grey target decision method[J]. Road Materials and Pavement Design, 2020, 21(7): 1844-1858. doi: 10.1080/14680629.2019.1568288
    [9] MIAO P, LIU P. Prediction-based maintenance of existing bridges using neural network and sensitivity analysis[J]. Advances in Civil Engineering, 2021, 2021: 4598337.
    [10] 梁宗保, 胡怡然, 张凯. 桥梁健康监测信息的数据驱动处理方法研究[J]. 计算机技术与发展, 2013, 23(10): 258-261. https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201310067.htm

    LIANG Zongbao, HU Yiran, ZHANG Kai. Research of data drive processing method of bridge health monitoring information[J]. Computer Technology and Development, 2013, 23(10): 258-261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201310067.htm
    [11] 夏烨, 王鹏, 孙利民. 基于多源信息的桥梁网级评估方法[J]. 同济大学学报(自然科学版), 2019, 47(11): 1574-1584. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201911006.htm

    XIA Ye, WANG Peng, SUN Limin. A condition assessment method for bridges at network level based on multi-source information[J]. Journal of Tongji University (Natural Science), 2019, 47(11): 1574-1584. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201911006.htm
    [12] WU Y, ZHANG L H, LIU H B, et al. Stress prediction of bridges using ANSYS soft and general regression neural network[J]. Structures, 2022, 40(6): 812-823.
    [13] 张巧灵, 高淑萍, 何迪, 等. 基于时间序列的混合神经网络数据融合算法[J]. 应用数学和力学, 2021, 42(1): 82-91. doi: 10.21656/1000-0887.410056

    ZHANG Qiaoling, GAO Shuping, HE Di, et al. A hybrid neural network data fusion algorithm based on time series[J]. Applied Mathematics and Mechanics, 2021, 42(1): 82-91. (in Chinese) doi: 10.21656/1000-0887.410056
    [14] CHOI Y, LEE J, KONG J. Performance degradation model for concrete deck of bridge using pseudo-LSTM[J]. Sustainability, 2020, 12(9): 3848. doi: 10.3390/su12093848
    [15] TAO W F, LIN P H, WANG N Y. Optimum life-cycle maintenance strategies of deteriorating highway bridges subject to seismic hazard by a hybrid Markov decision process model[J]. Structural Safety, 2021, 89(1): 102042.
    [16] 代亮, 翟一鸣, 汪贵平. 自供电路侧单元能量-时延均衡分组调度策略[J]. 交通运输工程学报, 2020, 20(2): 161-171. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202002013.htm

    DAI Liang, ZHAI Yiming, WANG Guiping. Packet scheduling scheme for energy-delay tradeoff in self-powered roadside units[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 161-171. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202002013.htm
    [17] 时笑鹏. 中小跨径混凝土梁桥退化预测和维护策略研究[D]. 北京: 北京交通大学, 2018.

    SHI Xiaopeng. The degradation prediction and main-tenance strategy of medium & short span concrete girder bridges[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese)
    [18] DIZAJ E A, PADGETT J E, KASHANI M M. A Markov chain-based model for structural vulnerability assessment of corrosion-damaged reinforced concrete bridges[J]. Philosophical Transactions of the Royal Society A, 2021, 379(2203): 20200290. doi: 10.1098/rsta.2020.0290
    [19] FANG Y, SUN L. Developing a semi-Markov process model for bridge deterioration prediction in shanghai[J]. Sustainability, 2019, 11(19): 5524. doi: 10.3390/su11195524
    [20] HAN Z Y, ZHAO J, HENRY L, et al. A review of deep learning models for time series prediction[J]. IEEE Sensors Journal, 2021, 21(6): 7833-7848. doi: 10.1109/JSEN.2019.2923982
    [21] 张志姝, 高燕. 具有随机扰动和Markov切换的中立型耦合神经网络的自适应同步[J]. 应用数学和力学, 2020, 41(12): 1381-1391. doi: 10.21656/1000-0887.410079

    ZHANG Zhishu, GAO Yan. Neutral form with random disturbance and Markov switching adaptive synchronization of coupled neural networks[J]. Applied Mathematics and Mechanics, 2020, 41(12): 1381-1391. (in Chinese) doi: 10.21656/1000-0887.410079
    [22] CHENG X, ZHOU J M, ZHAO X M. Safety assessment of vehicle behaviour based on the improved D-S evidence theory[J]. IET Intelligent Transport Systems, 2020, 14(11): 1396-1402. doi: 10.1049/iet-its.2019.0737
    [23] WANG H, GUO L, DOU Z, et al. A new method of cognitive signal recognition based on hybrid information entropy and DS evidence theory[J]. Mobile Networks and Applications, 2018, 23(4): 677-685. doi: 10.1007/s11036-018-1000-8
    [24] 于永堂, 郑建国, 张继文, 等. 基于卡尔曼滤波与指数平滑法融合模型的沉降预测新方法[J]. 岩土工程学报, 2021, 43(S1): 127-131. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2021S1025.htm

    YU Yongtang, ZHENG Jianguo, ZHANG Jiwen, et al. Prediction of settlement based on fusion model of Kalman filter and exponential smoothing algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 127-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2021S1025.htm
    [25] 蒋艳辉. 基于指数平滑法与马尔科夫链的道路交通事故预测研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.

    JIANG Yanhui. Research of road traffic accident prediction based on exponential smoothing and Markov chain[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
    [26] NEGIN A, MAHDI Z, LUDOVIC L. A sequential clustering method for the taxi-dispatching problem considering traffic dynamics[J]. IEEE Intelligent Transportation Systems Magazine, 2020, 12(4): 169-181. doi: 10.1109/MITS.2020.3014444
    [27] 李健. 桥梁退化预测模型与最优维护管理决策研究[D]. 长沙: 湖南大学, 2009.

    LI Jian. Deterioration prediction model and optimal maintenance strategy for existing bridge[D]. Changsha: Hunan University, 2009. (in Chinese)
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  74
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-02
  • 修回日期:  2024-01-10
  • 刊出日期:  2024-04-01

目录

    /

    返回文章
    返回