Research on Dynamic Characteristics of Serial-Parallel-Ⅱ Inerter Nonlinear Energy Sink
-
摘要: 分别使用非线性恢复力、非线性阻尼替代惯容减振系统中的线性恢复力、线性阻尼,并考虑摩擦力的影响,提出了混联Ⅱ型惯容非线性能量阱. 建立了主系统的动力学方程,利用谐波平衡法求解系统在简谐激励下的幅频响应曲线. 采用弧长算法和数值法相结合的方法研究了系统的惯质比、非线性阻尼、非线性刚度和摩擦力单个参数对其减振性能的影响. 发现非线性刚度和非线性阻尼数值的增大会使峰值先减小后增大,不同的是,前者幅频响应曲线逐渐向右上方向弯曲,后者产生峰值的位置向低频段转移. 分析了惯质比、非线性阻尼、非线性刚度3种参数两两组合下对系统减振效果的影响. 研究表明,在激励幅值为0.005 m时,惯质比和阻尼同时变化减振效果最好:当ε=0.1时,系统主结构位移峰值的最小值约为0.01 m;而在参数ε=0.001时,整体取值范围内其最大值约为0.061 m;当惯质比取得最佳值0.1时,非线性阻尼和非线性刚度κ21的取值范围变大. 在摩擦力的作用下,系统的最大幅值都有不同程度的增加. 上述研究可为振动系统减振的研究提供参考.Abstract: A serial-parallel-Ⅱ inerter nonlinear energy sink was proposed through replacement of the linear restoring force and linear damping with the nonlinear restoring force and nonlinear damping in inertial vibration reduction systems, in view of the effects of friction. The dynamic equation for the main system was established, the amplitude-frequency response curves of the system under the base simple harmonic excitation were solved with the harmonic balance method. The effects of the inertia ratio, nonlinear damping, nonlinear stiffness and friction on the vibration damping performance of the system were studied with the arc length algorithm and the numerical method. The results show that, with the increase of the nonlinear stiffness and nonlinear damping, the peak value will first decrease and then increase. The difference is that the amplitude-frequency response curve of the former gradually bends to the upper right direction, and the position of the peak value of the latter shifts to the lower frequency band. The actions of 3 parameters of the inertial ratio, nonlinear damping and nonlinear stiffness, on the damping effects of the system were analyzed. The research indicates that, with an excitation amplitude of 0.005 m, the vibration reduction effect will be the best when the inertia ratio and damping change simultaneously. For ε=0.1, the minimum value of the peak displacement of the main structure of the system will be about 0.01 m, while for ε=0.001, the maximum value within the overall value range will be approximately 0.061 m, and the amplitude damping ratio will be 97.1% and 82.1%, respectively. When the inertia ratio reaches optimal value 0.1, the nonlinear damping range and nonlinear stiffness κ21 will grow larger. Under friction, the maximum amplitude of the system will have different degrees of increases. The research results provide a reference for the study on structural vibration reduction.
-
Key words:
- harmonic balance method /
- nonlinear /
- inerter /
- vibration control
-
表 1 混联Ⅱ型惯容NES系统的仿真参数
Table 1. Simulation parameters of the serial-parallel-Ⅱ inerter NES system
symbol value main structural mass m1/kg 3.3 inerter parameter b/kg 0.33 main structure damping c1/(N·s·m-1) 1.4 linear stiffness k1/(N/m) 2 814 linear coefficient of nonlinear damping c21/(N·s·m-1) 5 nonlinear coefficient of nonlinear damping c22/(N·s3·m-3) 5 linear coefficient of nonlinear stiffness k21/(N/m) 4 814 nonlinear coefficient of nonlinear stiffness k22/(N/m3) 199 980 excitation amplitude A/m 0.005 natural frequency ω1/(rad/s) 29.2 inertia ratio ε 0.1 表 2 3种减振系统减振效果的对比
Table 2. Comparison of vibration reduction effects of 3 vibration reduction systems
excitation amplitude A/m system name value T-NES SP-Ⅱ-Ⅰ I-NES inertia ratio εI=0.1 εI=0.1 mass ratio εm=0.1 εb=0.001 εb=0.001 0.002 5 Ai/m 0.021 9 0.033 0 0.025 2 Ri/% 87.2 80.71 85.27 0.005 Ai/m 0.230 1 0.066 0 0.038 8 Ri/% 40.63 80.70 88.66 0.001 Ai/m 0.574 6 0.132 1 0.056 6 Ri/% 15.61 80.60 91.69 -
[1] 孔宪仁, 张也弛. 两自由度非线性吸振器在简谐激励下的振动抑制[J]. 航空学报, 2012, 33 (6): 1020-1029. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201206008.htmKONG Xianren, ZHANG Yechi. Vibration suppression of a two-degree-of-freedom nonlinear energy sink under harmonic excitation[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33 (6): 1020-1029. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201206008.htm [2] LUONGO A, ZULLI D. Aeroelastic instability analysis of NES-controlled systems via a mixed multiple scale/harmonic balance method[J]. Journal of Vibration and Control, 2014, 20 (13) : 1985-1998. doi: 10.1177/1077546313480542 [3] BICHIOU Y, HAJJ M R, NAYFEH A H. Effectiveness of a nonlinear energy sink in the control of an aeroelastic system[J]. Nonlinear Dynamics, 2016, 86 (4): 2161-2177. doi: 10.1007/s11071-016-2922-y [4] HARTOG J P D. Mechanical Vibrations[M]. New York: McGraw-Hill Book Company, 1947. [5] VAKAKIS A F. Inducing passive nonlinear energy sinks in vibrating systems[J]. Journal of Vibration and Acoustics, 2001, 123 (3): 324-332. doi: 10.1115/1.1368883 [6] VAKAKIS A F, MANEVITCH L I, GENDELMAN O, et al. Dynamics of linear discrete systems connected to local essentially nonlinear attachments[J]. Journal of Sound and Vibration, 2003, 264 (3): 559-577. doi: 10.1016/S0022-460X(02)01207-5 [7] KERSCHEN G, LEE Y S, VAKAKIS A F, et al. Irreversible passive energy transfer in coupled oscillators with essential nonlinearity[J]. SIAM Journal on Applied Mathematics, 2005, 66 (2): 648-679. doi: 10.1137/040613706 [8] GOURDON E, ALEXANDER N A, TAYLOR C A, et al. Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results[J]. Journal of Sound and Vibration, 2007, 300 (3): 522-551. [9] VAKAKIS A F, AL-SHUDEIFAT M A, HASANM A. Interactions of propagating waves in a one-dimensional chain of linear oscillators with a strongly nonlinear local attachment[J]. Meccanica, 2014, 49 (10): 2375-2397. doi: 10.1007/s11012-014-0008-9 [10] 刘中坡, 乌建中, 王菁菁, 等. 轨道型非线性能量阱对高层结构脉动风振的控制仿真[J]. 振动工程学报, 2016, 29 (6): 1088-1096. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201606019.htmLIU Zhongpo, WU Jianzhong, WANG Jingjing, et al. Simulation of track nonlinear energy sink for wind-induced vibration control in high-rise building[J]. Journal of Vibration Engineering, 2016, 29 (6): 1088-1096. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201606019.htm [11] 王菁菁, 浩文明, 吕西林. 轨道非线性能量阱阻尼对其减振性能的影响[J]. 振动与冲击, 2017, 36 (24): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201724005.htmWANG Jingjing, HAO Wenming, LÜ Xilin. Influence of track nonlinear energy sink damping on its vibration reduction performance[J]. Journal of Vibration and Shock, 2017, 36 (24): 30-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201724005.htm [12] 刘中坡, 吕西林, 鲁正, 等. 轨道型非线性能量阱振动控制的振动台试验研究[J]. 建筑结构学报, 2016, 37 (11): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201611001.htmLIU Zhongpo, LÜ Xilin, LU Zheng, et al. Experimental investigation on vibration control effect of track nonlinear energy sink[J]. Journal of Building Structures, 2016, 37 (11): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201611001.htm [13] 李东辉, 李晨, 张业伟, 等. 杠杆型串联非线性能量阱整星隔振系统的振动控制[J]. 振动与冲击, 2022, 41 (16): 278-284. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202216036.htmLI Donghui, LI Chen, ZHANG Yewei, et al. Vibration control of a whole star vibration isolator system based on lever-type series nonlinear energy sink[J]. Journal of Vibration and Shock, 2022, 41 (16): 278-284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202216036.htm [14] 李晨, 陈国一, 方勃, 等. 杠杆型并联非线性能量阱的振动控制[J]. 振动与冲击, 2021, 40 (15): 54-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202115008.htmLI Chen, CHEN Guoyi, FANG Bo, et al. Vibration control for lever-type parallel nonlinear energy trap[J]. Journal of Vibration and Shock, 2021, 40 (15): 54-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202115008.htm [15] HABIB G, ROMEO F. The tuned bistable nonlinear energy sink[J]. Nonlinear Dynamics, 2017, 89 (1) : 179-196. doi: 10.1007/s11071-017-3444-y [16] 陈洋洋, 陈凯, 谭平, 等. 负刚度非线性能量阱减震控制性能研究[J]. 工程力学, 2019, 36 (3): 149-158. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201903017.htmCHEN Yangyang, CHEN Kai, TAN Ping, et al. A study on structural seismic control performance by nonlinear energy sinks with negative stiffness[J]. Engineering Mechanics, 2019, 36 (3): 149-158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201903017.htm [17] ZANG J, CHEN L Q. Complex dynamics of a harmonically excited structure coupled with a nonlinear energy sink[J]. Acta Mechanica Sinica, 2017, 33 (4): 801-822. doi: 10.1007/s10409-017-0671-x [18] 谭平, 刘良坤, 陈洋洋, 等. 非线性能量阱减振系统受基底简谐激励的分岔特性分析[J]. 工程力学, 2017, 34 (12): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201712009.htmTAN Ping, LIU Liangkun, CHEN Yangyang, et al. Bifurcation analysis of nonlinear energy sink absorption system under ground harmonic excitation[J]. Engineering Mechanics, 2017, 34 (12): 67-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201712009.htm [19] YANG K, ZHANG Y W, DING H, et al. Nonlinear energy sink for whole-spacecraft vibration reduction[J]. Journal of Vibration and Acoustics, 2017, 139 (2): 021011. doi: 10.1115/1.4035377 [20] WANG J, WIERSCHEM N, SPENCER B F, et al. Experimental study of track nonlinear energy sinks for dynamic response reduction[J]. Engineering Structures, 2015, 94: 9-15. doi: 10.1016/j.engstruct.2015.03.007 [21] SAVADKOOHI A T, VAURIGAUD B, LAMARQUE C H, et al. Targeted energy transfer with parallel nonlinear energy sinks, part Ⅱ: theory and experiments[J]. Nonlinear Dynamics, 2012, 67 (1): 37-46. doi: 10.1007/s11071-011-9955-z [22] BOROSON E, MISSOUM S, MATTEI P, et al. Optimization under uncertainty of parallel nonlinear energy sinks[J]. Journal of Sound and Vibration, 2017, 394: 451-464. doi: 10.1016/j.jsv.2016.12.043 [23] CHEN J E, HE W, ZHANG W, et al. Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks[J]. Nonlinear Dynamics, 2018, 91 (2): 885-904. doi: 10.1007/s11071-017-3917-z [24] ARAKAKI T, KURODA H, ARIMA F, et al. Development of seismic devices applied to ball screw, part 1: basic performance test of RD-series[J]. AIJ Journal of Technology and Design, 1999, 5 (8): 239-244. doi: 10.3130/aijt.5.239_1 [25] SMITH M C. Synthesis of mechanical networks: the inerter[J]. IEEE Transactions on Automatic Control, 2002, 47 (10): 1648-1662. doi: 10.1109/TAC.2002.803532 [26] 潘超, 张瑞甫, 王超, 等. 单自由度混联Ⅱ型惯容减震体系的随机地震响应与参数设计[J]. 工程力学, 2019, 36 (1): 129-137. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201901014.htmPAN Chao, ZHANG Ruifu, WANG Chao, et al. Stochastic seismic response and design of structural system with series-parallel-Ⅱ inerter system[J]. Engineering Mechanics, 2019, 36 (1): 129-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201901014.htm [27] 周子博, 申永军, 邢海军, 等. 含惯容和杠杆元件的减振系统参数优化及性能分析[J]. 振动工程学报, 2022, 35 (2): 407-416. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202202016.htmZHOU Zibo, SHEN Yongjun, XING Haijun, et al. Parameter optimization and performance analysis of vibration mitigation systems with inertia and lever components[J]. Journal of Vibration Engineering, 2022, 35 (2): 407-416. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202202016.htm [28] 刘志彬, 谭平, 王菁菁, 等. 新型非对称惯容NES减震控制性能研究[J]. 振动与冲击, 2023, 42 (2): 116-125. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202302014.htmLIU Zhibin, TAN Ping, WANG Jingjing, et al. Performance analysis of a novel asymmetric inerter NES for seismic response mitigation[J]. Journal of Vibration and Shock, 2023, 42 (2): 116-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202302014.htm [29] EBRAHIMI M, WHALLEY R. Analysis modeling and simulation of stiffness in machine tool drives[J]. Computer and Industrial Engineering, 2000, 38 (1): 93-105. doi: 10.1016/S0360-8352(00)00031-0 [30] 范舒铜, 申永军. 简谐激励下黏弹性非线性能量阱的研究[J]. 力学学报, 2022, 54 (9): 2567-2576. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202209018.htmFAN Shutong, SHEN Yongjun. Research on a viscoelastic nonlinear energy sink under harmonic excitation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (9): 2567-2576. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202209018.htm [31] 张振. 惯容型非线性能量汇及其结构减振[D]. 上海: 上海大学, 2019.ZHANG Zhen. Inertial nonlinear energy sink and its suppression of structural vibration[D]. Shanghai: Shanghai University, 2019. (in Chinese)