留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混联Ⅱ型惯容非线性能量阱的动力学特性研究

吴子英 朱荣贤 姜东贵 晁国强 张禹轩

吴子英, 朱荣贤, 姜东贵, 晁国强, 张禹轩. 混联Ⅱ型惯容非线性能量阱的动力学特性研究[J]. 应用数学和力学, 2024, 45(7): 907-921. doi: 10.21656/1000-0887.440350
引用本文: 吴子英, 朱荣贤, 姜东贵, 晁国强, 张禹轩. 混联Ⅱ型惯容非线性能量阱的动力学特性研究[J]. 应用数学和力学, 2024, 45(7): 907-921. doi: 10.21656/1000-0887.440350
WU Ziying, ZHU Rongxian, JANG Donggui, CHAO Guoqiang, ZHANG Yuxuan. Research on Dynamic Characteristics of Serial-Parallel-Ⅱ Inerter Nonlinear Energy Sink[J]. Applied Mathematics and Mechanics, 2024, 45(7): 907-921. doi: 10.21656/1000-0887.440350
Citation: WU Ziying, ZHU Rongxian, JANG Donggui, CHAO Guoqiang, ZHANG Yuxuan. Research on Dynamic Characteristics of Serial-Parallel-Ⅱ Inerter Nonlinear Energy Sink[J]. Applied Mathematics and Mechanics, 2024, 45(7): 907-921. doi: 10.21656/1000-0887.440350

混联Ⅱ型惯容非线性能量阱的动力学特性研究

doi: 10.21656/1000-0887.440350
基金项目: 

国家自然科学基金 11572243

详细信息
    通讯作者:

    吴子英(1975—),男,副教授,博士(通讯作者. E-mail: ziyingwu@163.com)

  • 中图分类号: O322;TP113

Research on Dynamic Characteristics of Serial-Parallel-Ⅱ Inerter Nonlinear Energy Sink

  • 摘要: 分别使用非线性恢复力、非线性阻尼替代惯容减振系统中的线性恢复力、线性阻尼,并考虑摩擦力的影响,提出了混联Ⅱ型惯容非线性能量阱. 建立了主系统的动力学方程,利用谐波平衡法求解系统在简谐激励下的幅频响应曲线. 采用弧长算法和数值法相结合的方法研究了系统的惯质比、非线性阻尼、非线性刚度和摩擦力单个参数对其减振性能的影响. 发现非线性刚度和非线性阻尼数值的增大会使峰值先减小后增大,不同的是,前者幅频响应曲线逐渐向右上方向弯曲,后者产生峰值的位置向低频段转移. 分析了惯质比、非线性阻尼、非线性刚度3种参数两两组合下对系统减振效果的影响. 研究表明,在激励幅值为0.005 m时,惯质比和阻尼同时变化减振效果最好:当ε=0.1时,系统主结构位移峰值的最小值约为0.01 m;而在参数ε=0.001时,整体取值范围内其最大值约为0.061 m;当惯质比取得最佳值0.1时,非线性阻尼和非线性刚度κ21的取值范围变大. 在摩擦力的作用下,系统的最大幅值都有不同程度的增加. 上述研究可为振动系统减振的研究提供参考.
  • 图  1  新型混联Ⅱ型惯容NES力学模型

    Figure  1.  Mechanical modeling of a new serial-parallel-Ⅱ inerter NES

    图  2  滚珠丝杠惯容器的工作原理图

    Figure  2.  The ball screw inerter working principle diagram

    图  3  单自由度主系统的力学模型

    Figure  3.  Mechanical modeling of a 1-DOF primary system

    图  4  弧长算法求解示意图

    Figure  4.  Schematic diagram of the arc-length algorithm solution

    图  5  系统幅频响应曲线对比(ε=0.1, A=0.005 m)

    Figure  5.  Comparison of amplitude-frequency response curves of the system(ε=0.1, A=0.005 m)

    图  6  系统幅频响应曲线对比(ε=1, κ22=120)

    Figure  6.  Comparison of amplitude-frequency response curves of the system(ε=1, κ22=120)

    图  7  3种减振系统的力学模型

    Figure  7.  Mechanical models of 3 vibration reduction systems

    图  8  不同减振系统和激励幅值下主结构的幅频响应曲线(ε=0.1)

     为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  8.  The amplitude-frequency response curves of the main structure under different vibration reduction systems and excitation amplitudes(ε=0.1)

    图  9  NES的质量比与减振率的关系曲线

    Figure  9.  Relation curves between the mass ratio of NES and the vibration reduction rate

    图  10  不同刚度比κ21下的系统最大幅值(ε=0.1, A=0.005 m)

    Figure  10.  Maximum amplitude of the system for different stiffness ratios κ21 (ε=0.1, A=0.005 m)

    图  11  不同刚度比κ22下的系统幅频响应曲线(ε=1, A=0.005 m)

    Figure  11.  Amplitude-frequency response curve of the system with different stiffness ratio κ22 (ε=1, A=0.005 m)

    图  12  不同阻尼下的系统幅频响应曲线(ε=1, A=0.005 m)

    Figure  12.  Amplitude-frequency response curve of the system under different damping (ε=1, A=0.005 m)

    图  13  摩擦力对主系统的非线性特性的影响(ε=0.1, A=0.005 m)

    Figure  13.  The influence of friction on the nonlinear characteristics of the primary system (ε=0.1, A=0.005 m)

    图  14  摩擦力下的系统幅频响应曲线(ε=0.1, A=0.005 m)

    Figure  14.  Amplitude-frequency response curve of the system under friction force(ε=0.1, A=0.005 m)

    图  15  刚度和阻尼同时变化对主结构频响曲线峰值的影响

    Figure  15.  Influence of simultaneous stiffness and damping changes on the peak value of the frequency response curve of the main structure

    图  16  刚度和惯质比同时变化对主结构频响曲线峰值的影响

    Figure  16.  Influence of simultaneous stiffness and inertia ratio changes on the peak of the frequency response curve of the main structure

    图  17  惯质比和阻尼同时变化对主结构频响曲线峰值的影响

    Figure  17.  Influence of simultaneous inertia ratio and damping changes on the peak of the frequency response curve of the main structure

    表  1  混联Ⅱ型惯容NES系统的仿真参数

    Table  1.   Simulation parameters of the serial-parallel-Ⅱ inerter NES system

    symbol value
    main structural mass m1/kg 3.3
    inerter parameter b/kg 0.33
    main structure damping c1/(N·s·m-1) 1.4
    linear stiffness k1/(N/m) 2 814
    linear coefficient of nonlinear damping c21/(N·s·m-1) 5
    nonlinear coefficient of nonlinear damping c22/(N·s3·m-3) 5
    linear coefficient of nonlinear stiffness k21/(N/m) 4 814
    nonlinear coefficient of nonlinear stiffness k22/(N/m3) 199 980
    excitation amplitude A/m 0.005
    natural frequency ω1/(rad/s) 29.2
    inertia ratio ε 0.1
    下载: 导出CSV

    表  2  3种减振系统减振效果的对比

    Table  2.   Comparison of vibration reduction effects of 3 vibration reduction systems

    excitation amplitude A/m system name value
    T-NES SP-Ⅱ-Ⅰ I-NES
    inertia ratio εI=0.1 εI=0.1
    mass ratio εm=0.1 εb=0.001 εb=0.001
    0.002 5 Ai/m 0.021 9 0.033 0 0.025 2
    Ri/% 87.2 80.71 85.27
    0.005 Ai/m 0.230 1 0.066 0 0.038 8
    Ri/% 40.63 80.70 88.66
    0.001 Ai/m 0.574 6 0.132 1 0.056 6
    Ri/% 15.61 80.60 91.69
    下载: 导出CSV
  • [1] 孔宪仁, 张也弛. 两自由度非线性吸振器在简谐激励下的振动抑制[J]. 航空学报, 2012, 33 (6): 1020-1029. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201206008.htm

    KONG Xianren, ZHANG Yechi. Vibration suppression of a two-degree-of-freedom nonlinear energy sink under harmonic excitation[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33 (6): 1020-1029. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201206008.htm
    [2] LUONGO A, ZULLI D. Aeroelastic instability analysis of NES-controlled systems via a mixed multiple scale/harmonic balance method[J]. Journal of Vibration and Control, 2014, 20 (13) : 1985-1998. doi: 10.1177/1077546313480542
    [3] BICHIOU Y, HAJJ M R, NAYFEH A H. Effectiveness of a nonlinear energy sink in the control of an aeroelastic system[J]. Nonlinear Dynamics, 2016, 86 (4): 2161-2177. doi: 10.1007/s11071-016-2922-y
    [4] HARTOG J P D. Mechanical Vibrations[M]. New York: McGraw-Hill Book Company, 1947.
    [5] VAKAKIS A F. Inducing passive nonlinear energy sinks in vibrating systems[J]. Journal of Vibration and Acoustics, 2001, 123 (3): 324-332. doi: 10.1115/1.1368883
    [6] VAKAKIS A F, MANEVITCH L I, GENDELMAN O, et al. Dynamics of linear discrete systems connected to local essentially nonlinear attachments[J]. Journal of Sound and Vibration, 2003, 264 (3): 559-577. doi: 10.1016/S0022-460X(02)01207-5
    [7] KERSCHEN G, LEE Y S, VAKAKIS A F, et al. Irreversible passive energy transfer in coupled oscillators with essential nonlinearity[J]. SIAM Journal on Applied Mathematics, 2005, 66 (2): 648-679. doi: 10.1137/040613706
    [8] GOURDON E, ALEXANDER N A, TAYLOR C A, et al. Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results[J]. Journal of Sound and Vibration, 2007, 300 (3): 522-551.
    [9] VAKAKIS A F, AL-SHUDEIFAT M A, HASANM A. Interactions of propagating waves in a one-dimensional chain of linear oscillators with a strongly nonlinear local attachment[J]. Meccanica, 2014, 49 (10): 2375-2397. doi: 10.1007/s11012-014-0008-9
    [10] 刘中坡, 乌建中, 王菁菁, 等. 轨道型非线性能量阱对高层结构脉动风振的控制仿真[J]. 振动工程学报, 2016, 29 (6): 1088-1096. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201606019.htm

    LIU Zhongpo, WU Jianzhong, WANG Jingjing, et al. Simulation of track nonlinear energy sink for wind-induced vibration control in high-rise building[J]. Journal of Vibration Engineering, 2016, 29 (6): 1088-1096. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201606019.htm
    [11] 王菁菁, 浩文明, 吕西林. 轨道非线性能量阱阻尼对其减振性能的影响[J]. 振动与冲击, 2017, 36 (24): 30-34. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201724005.htm

    WANG Jingjing, HAO Wenming, LÜ Xilin. Influence of track nonlinear energy sink damping on its vibration reduction performance[J]. Journal of Vibration and Shock, 2017, 36 (24): 30-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201724005.htm
    [12] 刘中坡, 吕西林, 鲁正, 等. 轨道型非线性能量阱振动控制的振动台试验研究[J]. 建筑结构学报, 2016, 37 (11): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201611001.htm

    LIU Zhongpo, LÜ Xilin, LU Zheng, et al. Experimental investigation on vibration control effect of track nonlinear energy sink[J]. Journal of Building Structures, 2016, 37 (11): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201611001.htm
    [13] 李东辉, 李晨, 张业伟, 等. 杠杆型串联非线性能量阱整星隔振系统的振动控制[J]. 振动与冲击, 2022, 41 (16): 278-284. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202216036.htm

    LI Donghui, LI Chen, ZHANG Yewei, et al. Vibration control of a whole star vibration isolator system based on lever-type series nonlinear energy sink[J]. Journal of Vibration and Shock, 2022, 41 (16): 278-284. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202216036.htm
    [14] 李晨, 陈国一, 方勃, 等. 杠杆型并联非线性能量阱的振动控制[J]. 振动与冲击, 2021, 40 (15): 54-64. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202115008.htm

    LI Chen, CHEN Guoyi, FANG Bo, et al. Vibration control for lever-type parallel nonlinear energy trap[J]. Journal of Vibration and Shock, 2021, 40 (15): 54-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202115008.htm
    [15] HABIB G, ROMEO F. The tuned bistable nonlinear energy sink[J]. Nonlinear Dynamics, 2017, 89 (1) : 179-196. doi: 10.1007/s11071-017-3444-y
    [16] 陈洋洋, 陈凯, 谭平, 等. 负刚度非线性能量阱减震控制性能研究[J]. 工程力学, 2019, 36 (3): 149-158. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201903017.htm

    CHEN Yangyang, CHEN Kai, TAN Ping, et al. A study on structural seismic control performance by nonlinear energy sinks with negative stiffness[J]. Engineering Mechanics, 2019, 36 (3): 149-158. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201903017.htm
    [17] ZANG J, CHEN L Q. Complex dynamics of a harmonically excited structure coupled with a nonlinear energy sink[J]. Acta Mechanica Sinica, 2017, 33 (4): 801-822. doi: 10.1007/s10409-017-0671-x
    [18] 谭平, 刘良坤, 陈洋洋, 等. 非线性能量阱减振系统受基底简谐激励的分岔特性分析[J]. 工程力学, 2017, 34 (12): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201712009.htm

    TAN Ping, LIU Liangkun, CHEN Yangyang, et al. Bifurcation analysis of nonlinear energy sink absorption system under ground harmonic excitation[J]. Engineering Mechanics, 2017, 34 (12): 67-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201712009.htm
    [19] YANG K, ZHANG Y W, DING H, et al. Nonlinear energy sink for whole-spacecraft vibration reduction[J]. Journal of Vibration and Acoustics, 2017, 139 (2): 021011. doi: 10.1115/1.4035377
    [20] WANG J, WIERSCHEM N, SPENCER B F, et al. Experimental study of track nonlinear energy sinks for dynamic response reduction[J]. Engineering Structures, 2015, 94: 9-15. doi: 10.1016/j.engstruct.2015.03.007
    [21] SAVADKOOHI A T, VAURIGAUD B, LAMARQUE C H, et al. Targeted energy transfer with parallel nonlinear energy sinks, part Ⅱ: theory and experiments[J]. Nonlinear Dynamics, 2012, 67 (1): 37-46. doi: 10.1007/s11071-011-9955-z
    [22] BOROSON E, MISSOUM S, MATTEI P, et al. Optimization under uncertainty of parallel nonlinear energy sinks[J]. Journal of Sound and Vibration, 2017, 394: 451-464. doi: 10.1016/j.jsv.2016.12.043
    [23] CHEN J E, HE W, ZHANG W, et al. Vibration suppression and higher branch responses of beam with parallel nonlinear energy sinks[J]. Nonlinear Dynamics, 2018, 91 (2): 885-904. doi: 10.1007/s11071-017-3917-z
    [24] ARAKAKI T, KURODA H, ARIMA F, et al. Development of seismic devices applied to ball screw, part 1: basic performance test of RD-series[J]. AIJ Journal of Technology and Design, 1999, 5 (8): 239-244. doi: 10.3130/aijt.5.239_1
    [25] SMITH M C. Synthesis of mechanical networks: the inerter[J]. IEEE Transactions on Automatic Control, 2002, 47 (10): 1648-1662. doi: 10.1109/TAC.2002.803532
    [26] 潘超, 张瑞甫, 王超, 等. 单自由度混联Ⅱ型惯容减震体系的随机地震响应与参数设计[J]. 工程力学, 2019, 36 (1): 129-137. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201901014.htm

    PAN Chao, ZHANG Ruifu, WANG Chao, et al. Stochastic seismic response and design of structural system with series-parallel-Ⅱ inerter system[J]. Engineering Mechanics, 2019, 36 (1): 129-137. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201901014.htm
    [27] 周子博, 申永军, 邢海军, 等. 含惯容和杠杆元件的减振系统参数优化及性能分析[J]. 振动工程学报, 2022, 35 (2): 407-416. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202202016.htm

    ZHOU Zibo, SHEN Yongjun, XING Haijun, et al. Parameter optimization and performance analysis of vibration mitigation systems with inertia and lever components[J]. Journal of Vibration Engineering, 2022, 35 (2): 407-416. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202202016.htm
    [28] 刘志彬, 谭平, 王菁菁, 等. 新型非对称惯容NES减震控制性能研究[J]. 振动与冲击, 2023, 42 (2): 116-125. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202302014.htm

    LIU Zhibin, TAN Ping, WANG Jingjing, et al. Performance analysis of a novel asymmetric inerter NES for seismic response mitigation[J]. Journal of Vibration and Shock, 2023, 42 (2): 116-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202302014.htm
    [29] EBRAHIMI M, WHALLEY R. Analysis modeling and simulation of stiffness in machine tool drives[J]. Computer and Industrial Engineering, 2000, 38 (1): 93-105. doi: 10.1016/S0360-8352(00)00031-0
    [30] 范舒铜, 申永军. 简谐激励下黏弹性非线性能量阱的研究[J]. 力学学报, 2022, 54 (9): 2567-2576. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202209018.htm

    FAN Shutong, SHEN Yongjun. Research on a viscoelastic nonlinear energy sink under harmonic excitation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (9): 2567-2576. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202209018.htm
    [31] 张振. 惯容型非线性能量汇及其结构减振[D]. 上海: 上海大学, 2019.

    ZHANG Zhen. Inertial nonlinear energy sink and its suppression of structural vibration[D]. Shanghai: Shanghai University, 2019. (in Chinese)
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  42
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-08
  • 修回日期:  2024-02-17
  • 刊出日期:  2024-07-01

目录

    /

    返回文章
    返回