A Defect Identification Method for Bonding Layers of Adhesive Steel Members Based on Machine Learning
-
摘要: 对黏钢加固结构黏接层缺陷对超声检测信号的影响进行了深入研究,并提出了一种基于机器学习的黏接层缺陷识别的新型方法.首先,该文基于直接接触式的脉冲回波反射法对黏钢构件进行有限元模拟,并阐述了超声波在黏钢构件中的传播规律;其次,通过分析局部段超声回波信号及相关信号特征,讨论了不同缺陷变量对超声回波信号的影响规律;最后,建立了黏钢构件超声时程响应数据集,并对比了不同机器学习模型对缺陷大小、位置的分类识别性能,形成了黏钢构件黏接层缺陷识别方法.结果表明,局部段超声回波信号及其特征随着缺陷大小、位置的改变呈规律性变化,能够对缺陷信息进行初步区分.同时,该文提出的基于RF模型的黏钢构件黏接层缺陷识别方法能够有效识别黏钢构件黏接层缺陷,具有较广阔的工程应用前景.Abstract: The effects of bonding layer defects on ultrasonic detection signals of bonded steel reinforced structures were deeply studied and a new method for the bonding layer defect identification based on machine learning was proposed. Firstly, based on the direct contact pulse-echo reflection method, the finite element simulation of the viscous steel member was carried out, and the propagation law of ultrasonic waves in the viscous steel member was expounded. Secondly, the characteristics of local ultrasonic echo signals and related signals were analyzed, and the effects of different defect variables on ultrasonic echo signals were discussed. Finally, the ultrasonic time-history response data set of the adhesive steel member was established, and the classification and recognition performances of different machine learning models for the size and location of defects were compared, and the defect identification method for the adhesive layer of the bonded steel member was built. The results show that, the local ultrasonic echo signal and its characteristics change regularly with the defect size and location, which can help preliminarily distinguish the defect information. Meanwhile, the proposed RF model-based defect identification method can effectively identify the defects of the adhesive layer in the bonded steel member, and has a broad engineering application prospect.
-
Key words:
- ultrasonic testing /
- machine learning /
- bonded steel component /
- bonding layer defect
edited-byedited-by1) (我刊青年编委周立成来稿) -
表 1 材料参数
Table 1. Material parameters
simulation material density ρ/(kg/m3) elasticity modulus E/MPa Poisson’s ratio υ steel 7.85×103 2.00×105 0.28 epoxy structural adhesive 1.20×103 2.02×103 0.48 concrete 2.50×103 2.50×104 0.20 表 2 超声检测数据集工况统计
Table 2. Working condition statistics of the ultrasonic test data set
thickness of adhesive ha/mm number of changes in the defect location number of changes in defect diameter number of working conditions corresponding to various thicknesses 1 1 29 29 2 11 29 319 3 21 29 609 4 31 29 899 -
[1] 阿林香. 桥梁钢T梁梁底贴钢板施工质量控制[J]. 中国高新科技, 2021(2): 40-41. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKE202102016.htmA Linxiang. Construction quality control of steel plate attached to the bottom of bridge steel T-beam[J]. China High and New Technology, 2021(2): 40-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXKE202102016.htm [2] 缪飞, 王庆曌. 钢筋混凝土结构粘钢加固质量检测[J]. 中华民居, 2014(5): 160. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHMJ201405140.htmMIAO Fei, WANG Qingzhao. Quality inspection of reinforced concrete structure bonded to steel reinforcement[J]. China Homes, 2014(5): 160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHMJ201405140.htm [3] 佟阳. 粘贴钢板补强钢筋混凝土梁抗剪性能试验研究[J]. 公路交通科技(应用技术版), 2011, 7(5): 4-5. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201105003.htmTONG Yang. Experimental study on shear behavior of reinforced concrete beams reinforced by pasted steel plates[J]. Journal of Highway and Transportation Research and Development, 2011, 7(5): 4-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJJ201105003.htm [4] 林学春. 钢筋混凝土桥梁粘钢加固试验研究[J]. 中外公路, 2013, 33(1): 167-172. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201301043.htmLIN Xuechun. Experimental study on reinforced concrete bridge reinforced with steel[J]. Journal of China & Foreign Highway, 2013, 33(1): 167-172. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201301043.htm [5] 刘茂钊, 杨博, 杨英武. 基于涡流热激励的粘钢加固混凝土结构粘结层缺陷热像识别试验研究[J]. 中国测试, 2023, 49(5): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202305008.htmLIU Maozhao, YANG Bo, YANG Yingwu. Experimental study on thermal image identification of bonded layer defects in reinforced concrete structures based on eddy current thermal excitation[J]. China Measurement & Test, 2023, 49(5): 52-59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYCS202305008.htm [6] 杨英武, 张欣, 杨小青, 等. 红外热像法识别混凝土结构粘钢加固缺陷的试验研究[J]. 低温建筑技术, 2018, 40(5): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW201805010.htmYANG Yingwu, ZHANG Xin, YANG Xiaoqing, et al. Experimental study on identification of reinforced defects of concrete structures by using infrared thermography[J]. Low Temperature Architecture Technology, 2018, 40(5): 21-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DRAW201805010.htm [7] YAN D, NEILD S A, DRINKWATER B W. Modelling and measurement of the nonlinear behaviour of kissing bonds in adhesive joints[J]. NDT & E International, 2012, 47: 18-25. [8] ADAMS R D, DRINKWATER B W. Nondestructive testing of adhesively-bonded joints[J]. NDT & E International, 1997, 30(2): 93-98. [9] TITOV S A, MAEV R G, BOGACHENKOV A N. Pulse-echo NDT of adhesively bonded joints in automotive assemblies[J]. Ultrasonics, 2008, 48(6/7): 537-546. [10] 孙朝明, 汤光平, 李建文. 脉冲反射法检测粘接缺陷的有限元模拟[J]. 无损检测, 2014. 36(7): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201407002.htmSUN Chaoming, TANG Guangping, LI Jianwen. Finite element simulation of detection of bonding defects by pulse reflection method[J]. Nondestructive Testing, 2014, 36(7): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201407002.htm [11] SUN G, ZHAO L, DONG M, et al. Non-contact characterization of debonding in lead-alloy steel bonding structure with laser ultrasound[J]. Optik, 2018, 164: 734-744. doi: 10.1016/j.ijleo.2018.03.075 [12] 陈军, 乔丹, 崔哲, 等. 黏接结构弱黏接缺陷的非线性超声评价[J]. 无损检测, 2019, 41(9): 60-64. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201909016.htmLI Jun, QIAO Dan, CUI Zhe, et al. Nonlinear ultrasonic evaluation of weak bonding defects in bonding structure[J]. Nondestructive Testing, 2019, 41(9): 60-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC201909016.htm [13] 郝威, 李明, 徐莹, 等. 复合材料蜂窝夹芯缺陷超声检测模拟研究[J]. 机械科学与技术, 2023, 42(8): 1362-1365. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202308024.htmHAO Wei, LI Ming, XU Ying, et al. Simulation study on ultrasonic detection of defects in honeycomb sandwich of composite materials[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 42(8): 1362-1365. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202308024.htm [14] 李伟, 李建增, 周海林, 等. 多层复合材料超声检测的数值模拟[J]. 系统仿真技术, 2012, 8(1): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFJ201201009.htmLI Wei, LI Jianzeng, ZHOU Hailin, et al. Numerical simulation of ultrasonic testing of multilayer composites[J]. System Simulation Technology, 2012, 8(1): 32-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFJ201201009.htm [15] WOJTCZAK E, RUCKA M. Wave frequency effects on damage imaging in adhesive joints using lamb waves and RMS[J]. Materials, 2019, 12(11): 1842. doi: 10.3390/ma12111842 [16] WANG H, FAN Z, CHEN X, et al. Automated classification of pipeline defects from ultrasonic phased array total focusing method imaging[J]. Energies, 2022, 15(21): 8272. doi: 10.3390/en15218272 [17] LIU Q, JIANG A, FANG D, et al. Intelligent recognition of defects in vermicular graphite cast iron engine cylinder head by ultrasonic testing[J]. Journal of Physics: Conference Series, 2021, 1894(1): 12034. doi: 10.1088/1742-6596/1894/1/012034 [18] LV G, GUO S, CHEN D, et al. Laser ultrasonics and machine learning for automatic defect detection in metallic components[J]. NDT & E International, 2023, 133: 102752. [19] SAMBATH S, NAGARAJ P, SELVAKUMAR N. Automatic defect classification in ultrasonic NDT using artificial intelligence[J]. Journal of Nondestructive Evaluation, 2011, 30(1): 20-28. doi: 10.1007/s10921-010-0086-0 [20] 徐猛, 李宇涛, 徐彦霖, 等. 粘接层厚度对粘接质量超声检测的影响分析[J]. 兵器材料科学与工程, 2008, 31(3): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG200803019.htmXU Meng, LI Yutao, XU Yanlin, et al. Analysis of influence of bonding layer thickness on ultrasonic detection of bonding quality[J]. Ordnance Material Science and Engineering, 2008, 31(3): 62-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCKG200803019.htm [21] 马晓磊. 基于COMSOL仿真的材料缺陷超声检测模式识别[D]. 南昌: 南昌航空大学, 2019.MA Xiaolei. Pattern recognition of ultrasonic testing of material defects based on COMSOL simulation[D]. Nanchang: Nanchang Hangkong University, 2019. (in Chinese)