留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非饱和土干缩开裂分析的近场动力学模拟

刘攀勇 顾鑫 章青

刘攀勇, 顾鑫, 章青. 非饱和土干缩开裂分析的近场动力学模拟[J]. 应用数学和力学, 2024, 45(7): 823-834. doi: 10.21656/1000-0887.450002
引用本文: 刘攀勇, 顾鑫, 章青. 非饱和土干缩开裂分析的近场动力学模拟[J]. 应用数学和力学, 2024, 45(7): 823-834. doi: 10.21656/1000-0887.450002
LIU Panyong, GU Xin, ZHANG Qing. Peridynamics for Moisture Diffusion and Crack Propagation in Unsaturated Soil Desiccation[J]. Applied Mathematics and Mechanics, 2024, 45(7): 823-834. doi: 10.21656/1000-0887.450002
Citation: LIU Panyong, GU Xin, ZHANG Qing. Peridynamics for Moisture Diffusion and Crack Propagation in Unsaturated Soil Desiccation[J]. Applied Mathematics and Mechanics, 2024, 45(7): 823-834. doi: 10.21656/1000-0887.450002

非饱和土干缩开裂分析的近场动力学模拟

doi: 10.21656/1000-0887.450002
(我刊编委章青来稿)
基金项目: 

国家自然科学基金 12172121

国家自然科学基金 12002118

国家自然科学基金 11932006

湖南省水利科技项目 XSKJ2023059-16

上海市青年科技英才扬帆计划 21YF1419000

详细信息
    作者简介:

    刘攀勇(1995—),男,博士(E-mail: panyong_mechanics@163.com)

    顾鑫(1991—),男,副教授(E-mail: xingu@hhu.edu.cn)

    通讯作者:

    章青(1963—),男,教授(通讯作者. E-mail: lxzhangqing@hhu.edu.cn)

  • 中图分类号: P642.3

Peridynamics for Moisture Diffusion and Crack Propagation in Unsaturated Soil Desiccation

(Contributed by ZHANG Qing, M.AMM Editorial Board)
  • 摘要: 非饱和土失水收缩变形是一种水力耦合现象,其诱发的开裂问题严重削弱了土体的水力和力学特性,造成各种潜在的自然灾害. 相对于饱和土体,非饱和土的失水收缩机制更为复杂,受到广泛关注. 为此,提出了一种考虑水-力耦合作用效应的键型近场动力学(PD)模型,探究由于水分变化引起的非饱和土体变形开裂特征. 在该模型中,非饱和土扩散方程由近场动力学微分算子进行重构,键型近场动力学运动方程采用改进的微弹性模量. 然后提出了一种显-隐式混合算法,扩散方程采用显式差分格式求解,运动方程采用隐式整体格式求解,有效避免了两类方程在同一显式格式下时间步不协调的问题. 通过非饱和土块干燥收缩变形和三维土盘干燥开裂的算例分析,验证了模型和算法的有效性. 研究结果表明,所建立的模型和算法能较好地捕捉非饱和土失水收缩开裂的过程.
    1)  (我刊编委章青来稿)
  • 图  1  地表土壤干燥裂缝

    Figure  1.  Desiccation cracks of soil surface

    图  2  土块的几何模型和边界条件

    Figure  2.  The geometric model and boundary conditions of the soil block

    图  3  水分含量和竖向位移云图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  Contours of the moisture content and the vertical displacement

    图  4  abc点水分含量和垂直方向位移近场动力学解与有限差分解

    Figure  4.  Results comparison between the peridynamics and the finite difference method at points a, b and c

    图  5  土盘几何模型与边界条件

    Figure  5.  The geometrical model and boundary conditions of the soil plate

    图  6  三维土盘干缩裂纹演化

    Figure  6.  Honeycomb crack evolution in the 3D soil plate

    图  7  H=4 mm截面含水量随时间变化

    Figure  7.  Moisture content changes with time at the section of H=4 mm

    图  8  不同时刻水分含量随深度变化

    Figure  8.  Moisture content changes with the depth at different moments

    图  9  三维土盘位移云图

    Figure  9.  Contours of displacements of the 3D soil plate

  • [1] BRONSWIJK J, HAMMINGA W, OOSTINDIE K. Field-scale solute transport in a heavy clay soil[J]. Water Resources Research, 1995, 31 (3): 517-526. doi: 10.1029/94WR02534
    [2] 唐朝生, 施斌, 刘春. 膨胀土收缩开裂特性研究[J]. 工程地质学报, 2012, 20 (5) : 663-673. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201205004.htm

    TANG Chaosheng, SHI Bin, LIU Chun. Study on desiccation cracking behaviour of expansive soil[J]. Journal of Engineering Geology, 2012, 20 (5): 663-673. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201205004.htm
    [3] YESILLER N, MILLER C, INCI G, et al. Desiccation and cracking behavior of three compacted landfill liner soils[J]. Engineering Geology, 2000, 57 (1/2): 105-121.
    [4] BOIVIN P, GARNIER P, VAUCLIN M. Modeling the soil shrinkage and water retention curves with the same equations[J]. Soil Science Society of America Journal, 2006, 70 (4): 1082-1093. doi: 10.2136/sssaj2005.0218
    [5] 张晓宇, 许强, 刘春, 等. 黏性土失水开裂多场耦合离散元数值模拟[J]. 工程地质学报, 2017, 25 (6): 1430-1437. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201706005.htm

    ZHANG Xiaoyu, XU Qiang, LIU Chun, et al. Numerical simulation of drying cracking using multi-field coupling discrete element method[J]. Journal of Engineering Geology, 2017, 25 (6): 1430-1437. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201706005.htm
    [6] CHAKRABARTI S, KODIKARA J, PARDO L. An overview of stabilisation methods and performance of local government roads in Australia[C]//International Symposium on Subgrade Stabilisation and In Situ Pavement Recycling Using Cement. Salamanca, Spain, 2001.
    [7] INTHARASOMBAT N, PUPPALA A J, WILLIAMMEE R. Compost amended soil treatment for mitigating highway shoulder desiccation cracks[J]. Journal of Infrastructure Systems, 2007, 13 (4): 287-298. doi: 10.1061/(ASCE)1076-0342(2007)13:4(287)
    [8] TANG C S, ZHU C, CHENG Q, et al. Desiccation cracking of soils: a review of investigation approaches, underlying mechanisms, and influencing factors[J]. Earth-Science Reviews, 2021, 216 : 103586. doi: 10.1016/j.earscirev.2021.103586
    [9] GLENNIE K W. Desert Sedimentary Environments[M]. Elsevier Amsterdam, 2010.
    [10] EL-MAARRY M R, WATTERS W, YOLDI Z, et al. Field investigation of dried lakes in western United States as an analogue to desiccation fractures on Mars[J]. Journal of Geophysical Research: Planets, 2015, 120 (12): 2241-2257. doi: 10.1002/2015JE004895
    [11] LEE F H, LO K W, LEE S L. Tension crack development in soils[J]. Journal of Geotechnical Engineering, 1988, 114 (8): 915-929. doi: 10.1061/(ASCE)0733-9410(1988)114:8(915)
    [12] MORRIS P H, GRAHAM J, WILLIAMS D J. Cracking in drying soils[J]. Canadian Geotechnical Journal, 1992, 29 (2): 263-277. doi: 10.1139/t92-030
    [13] KONRAD J M, AYAD R. A idealized framework for the analysis of cohesive soils undergoing desiccation[J]. Canadian Geotechnical Journal, 1997, 34 (4): 477-488. doi: 10.1139/t97-015
    [14] CHENG W, BIAN H, HATTAB M, et al. Numerical modelling of desiccation shrinkage and cracking of soils[J]. European Journal of Environmental and Civil Engineering, 2023, 27 (12): 3525-3545. doi: 10.1080/19648189.2022.2140208
    [15] YU P, WANG X, YU J, et al. XFEM simulation of soil crack evolution process considering the stress concentration and redistribution at the crack tip[J]. International Journal of Geomechanics, 2022, 22 (9): 04022137. doi: 10.1061/(ASCE)GM.1943-5622.0002505
    [16] VO T D, POUYA A, HEMMATI S, et al. Numerical modelling of desiccation cracking of clayey soil using a cohesive fracture method[J]. Computers and Geotechnics, 2017, 85 : 15-27. doi: 10.1016/j.compgeo.2016.12.010
    [17] POUYA A, VO T D, HEMMATI S, et al. Modeling soil desiccation cracking by analytical and numerical approaches[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43 (3): 738-763. doi: 10.1002/nag.2887
    [18] SÁNCHEZ M, MANZOLI O L, GUIMARÃES L J. Modeling 3-D desiccation soil crack networks using a mesh fragmentation technique[J]. Computers and Geotechnics, 2014, 62 : 27-39. doi: 10.1016/j.compgeo.2014.06.009
    [19] 吴艳青, 张克实. 利用内聚力模型(CZM)模拟弹粘塑性多晶体的裂纹扩展[J]. 应用数学和力学, 2006, 27 (4): 454-462. http://www.applmathmech.cn/article/id/707

    WU Yanqing, ZHANG Keshi. Crack propagation in polycrystalline elastic-viscoplastic materials using cohesive zone models[J]. Applied Mathematics and Mechanics, 2006, 27 (4): 454-462. (in Chinese) http://www.applmathmech.cn/article/id/707
    [20] MIEHE C, MAUTHE S. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 304 : 619-655. doi: 10.1016/j.cma.2015.09.021
    [21] HU T, GUILLEMINOT J, DOLBOW J E. A phase-field model of fracture with frictionless contact and random fracture properties: application to thin-film fracture and soil desiccation[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 368 : 113106. doi: 10.1016/j.cma.2020.113106
    [22] BUI H H, NGUYEN G D, KODIKARA J, et al. Soil cracking modelling using the mesh-free SPH method[C]// 12 th Australia New Zealand Conference on Geomechanics. New Zealand, Australia, 2015: 122-129.
    [23] TRAN H T, WANG Y, NGUYEN G D, et al. Modelling 3D desiccation cracking in clayey soils using a size-dependent SPH computational approach[J]. Computers and Geotechnics, 2019, 116 : 103209. doi: 10.1016/j.compgeo.2019.103209
    [24] TRAN T H. A coupled hydro-mechanical SPH framework to model desiccation cracking in clay soils[D]. Melbourne: Monash University, 2019.
    [25] TU Z, PENG C, LI C, et al. MPM-driven dynamic desiccation cracking and curling in unsaturated soils[J]. Computer Animation and Virtual Worlds, 2023, 34 (3/4): e2172.
    [26] VOGEL H J, HOFFMANN H, LEOPOLD A, et al. Studies of crack dynamics in clay soil, Ⅱ: a physically based model for crack formation[J]. Geoderma, 2005, 125 (3/4): 213-223.
    [27] ZHU L, SHEN T, MA R, et al. Development of cracks in soil: an improved physical model[J]. Geoderma, 2020, 366 : 114258. doi: 10.1016/j.geoderma.2020.114258
    [28] JIA X, HAO Y, LI P, et al. Nanoscale deformation and crack processes of kaolinite under water impact using molecular dynamics simulations[J]. Applied Clay Science, 2021, 206 : 106071. doi: 10.1016/j.clay.2021.106071
    [29] ZHANG Z, SONG X. Molecular dynamics modeling of cracks in dry clay sheets at the nanoscale[J]. Computers and Geotechnics, 2022, 152 : 105037. doi: 10.1016/j.compgeo.2022.105037
    [30] 司马军, 蒋明镜, 周创兵. 黏性土干缩开裂过程离散元数值模拟[J]. 岩土工程学报, 2013, 35 (S2): 286-291. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2049.htm

    SIMA Jun, JIANG Mingjing, ZHOU Chuangbing. Numerical simulation of desiccation cracking of clay soils by DEM[J]. Chinese Journal of Geotechnical Engineering, 2013, 35 (S2): 286-291. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2049.htm
    [31] LIN Z Y, WANG Y S, TANG C S, et al. Discrete element modelling of desiccation cracking in thin clay layer under different basal boundary conditions[J]. Computers and Geotechnics, 2021, 130 : 103931. doi: 10.1016/j.compgeo.2020.103931
    [32] 刘小飞, 游世辉, 谢纯凯. 基于复杂网络的黏性土颗粒边坡堆积体失稳研究[J]. 应用数学和力学, 2020, 41 (9): 931-942. doi: 10.21656/1000-0887.400225

    LIU Xiaofei, YOU Shihui, XIE Chunkai. Study on instability of clay granular slope piles based on complex network[J]. Applied Mathematics and Mechanics, 2020, 41 (9): 931-942. (in Chinese) doi: 10.21656/1000-0887.400225
    [33] JABAKHANJI R. Peridynamic modeling of coupled mechanical deformations and transient flow in unsaturated soils[D]. West Lafayette: Purdue University, 2013.
    [34] TEE T Y. Methodology for integrated vapor pressure, hygroswelling, and thermo-mechanical stress modeling of IC packages[M]//Moisture Sensitivity of Plastic Packages of IC Devices. 2010: 221-243.
    [35] 李天一, 章青, 夏晓舟, 等. 考虑混凝土材料非均质特性的近场动力学模型[J]. 应用数学和力学, 2018, 39 (8): 913-924. doi: 10.21656/1000-0887.380274

    LI Tianyi, ZHANG Qing, XIA Xiaozhou, et al. A peridynamic model for heterogeneous concrete materials[J]. Applied Mathematics and Mechanics, 2018, 39 (8): 913-924. (in Chinese) doi: 10.21656/1000-0887.380274
    [36] MENON S, SONG X. Coupled analysis of desiccation cracking in unsaturated soils through a non-local mathematical formulation[J]. Geosciences, 2019, 9 (10): 428. doi: 10.3390/geosciences9100428
    [37] YAN H, JIVKOV A P, SEDIGHI M. Modelling soil desiccation cracking by peridynamics[J]. Géotechnique, 2023, 73 (5): 388-400. doi: 10.1680/jgeot.21.00032
    [38] LIU P, GU X, LU Y, et al. Peridynamics for mechanism analysis of soil desiccation cracking: coupled hygro-mechanical model, staggered and monolithic solution[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 406 : 115896. doi: 10.1016/j.cma.2023.115896
    [39] 王琳琳. 多孔介质力学[M]. 北京: 石油工业出版社, 2022.

    WANG Linlin. Mechanics of Porous Media[M]. Beijing: Petron Industry Press, 2022. (in Chinese)
    [40] POUYA A. A finite element method for modeling coupled flow and deformation in porous fractured media[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39 (16): 1836-1852. doi: 10.1002/nag.2384
    [41] VAN GENUCHTEN M T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44 (5): 892-898. doi: 10.2136/sssaj1980.03615995004400050002x
    [42] MADENCI E, BARUT A, FUTCH M. Peridynamic differential operator and its applications[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 304 : 408-451. doi: 10.1016/j.cma.2016.02.028
    [43] MADENCI E, BARUT A, PHAN N. Bond-based peridynamics with stretch and rotation kinematics for opening and shearing modes of fracture[J]. Journal of Peridynamics and Nonlocal Modeling, 2021, 3 : 211-254. doi: 10.1007/s42102-020-00049-4
    [44] GU X, LI X, XIA X, et al. A robust peridynamic computational framework for predicting mechanical properties of porous quasi-brittle materials[J]. Composite Structures, 2023, 303 : 116245. doi: 10.1016/j.compstruct.2022.116245
    [45] 郁杨天, 章青, 顾鑫. 近场动力学与有限单元法的混合模型与隐式求解格式[J]. 浙江大学学报(工学版), 2017, 51 (7): 1324-1330. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201707008.htm

    YU Yangtian, ZHANG Qing, GU Xin. Hybrid model of peridynamics and finite element method under implicit schemes[J]. Journal of Zhejiang University (Engineering Science), 2017, 51 (7): 1324-1330. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201707008.htm
    [46] QUEVEDO R, ROMANEL C, ROEHL D. Numerical modeling of unsaturated soil behavior considering different constitutive models[C]//MATEC Web of Conferences. 2021: 02007.
    [47] TANG C S, SHI B, LIU C, et al. Experimental characterization of shrinkage and desiccation cracking in thin clay layer[J]. Applied Clay Science, 2011, 52 (1/2): 69-77.
    [48] 张映梅. 非饱和重塑黄土水分蒸发试验研究[D]. 兰州: 兰州交通大学, 2020.

    ZHANG Yingmei. Experimental study on water evaporation of unsaturated remolded loess[D]. Lanzhou: Lanzhou Jiaotong University, 2020. (in Chinese)
  • 加载中
图(9)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  50
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-02
  • 修回日期:  2024-03-11
  • 刊出日期:  2024-07-01

目录

    /

    返回文章
    返回