留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于EFEM和气泡统一方程的双气泡耦合效应研究

许流逸 李世民 王诗平 刘云龙 张阿漫

许流逸, 李世民, 王诗平, 刘云龙, 张阿漫. 基于EFEM和气泡统一方程的双气泡耦合效应研究[J]. 应用数学和力学, 2024, 45(7): 835-849. doi: 10.21656/1000-0887.450018
引用本文: 许流逸, 李世民, 王诗平, 刘云龙, 张阿漫. 基于EFEM和气泡统一方程的双气泡耦合效应研究[J]. 应用数学和力学, 2024, 45(7): 835-849. doi: 10.21656/1000-0887.450018
XU Liuyi, LI Shimin, WANG Shiping, LIU Yunlong, ZHANG Aman. Investigation of Coupling Effects of Double Bubbles Based on the EFEM and the Unified Bubble Equation[J]. Applied Mathematics and Mechanics, 2024, 45(7): 835-849. doi: 10.21656/1000-0887.450018
Citation: XU Liuyi, LI Shimin, WANG Shiping, LIU Yunlong, ZHANG Aman. Investigation of Coupling Effects of Double Bubbles Based on the EFEM and the Unified Bubble Equation[J]. Applied Mathematics and Mechanics, 2024, 45(7): 835-849. doi: 10.21656/1000-0887.450018

基于EFEM和气泡统一方程的双气泡耦合效应研究

doi: 10.21656/1000-0887.450018
(我刊青年编委刘云龙、编委张阿漫来稿)
基金项目: 

国家自然科学基金 51925904

国家自然科学基金 52088102

中国博士后科学基金 2024T171136

黑龙江省博士后资助项目 LBH-Z23115

国家资助博士后研究人员计划 GZB20230942

详细信息
    作者简介:

    许流逸(1998—),男,博士(E-mail: liuyi980211@126.com)

    通讯作者:

    李世民(1996—),男,讲师,博士(通讯作者. E-mail: lishimien@126.com)

  • 中图分类号: O351.2

Investigation of Coupling Effects of Double Bubbles Based on the EFEM and the Unified Bubble Equation

(Contributed by LIU Yunlong, M.AMM Youth Editorial Board & ZHANG Aman, M.AMM Editorial Board)
  • 摘要: 基于Euler有限元方法(EFEM), 建立了双气泡水下脉动轴对称数值模型,通过与气泡统一方程和实验结果的对比,该模型的准确性和网格的收敛性得到了充分验证. 计算结果表明,相比其他气泡理论,气泡统一方程对气泡动力学行为和流场中压力载荷的预测更为准确. 结合EFEM和气泡统一方程,研究了浮力参数δ和强度参数ε对双气泡耦合规律的影响. 当δ≤0.15时,上气泡在下气泡的作用下会产生垂直向下的射流,此时下气泡边界与固壁边界相似;而当δ增大至0.2时,下气泡对上气泡的影响减弱,浮力效应占据主导地位,上气泡的射流方向垂直向上. ε对气泡间的耦合作用未造成明显影响,但当ε≥150时,其对气泡射流速度的作用会明显减弱.
    1)  (我刊青年编委刘云龙、编委张阿漫来稿)
  • 图  1  自由场中的双气泡脉动示意图

    Figure  1.  Diagram of double bubble pulsation in a free field

    图  2  实验结果[47]与数值结果的对比

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  Comparison of experimental results[47] with numerical results

    图  3  气泡1半径和迁移时历曲线数值与理论计算[19]对比

    Figure  3.  Comparison of numerical and theoretical results[19] of bubble 1 radius and migration time curves

    图  4  气泡2半径和迁移时历曲线数值与理论计算[19]对比

    Figure  4.  Comparison of numerical and theoretical results[19] of bubble 2 radius and migration time curves

    图  5  δ=0.05时的自由场同相双气泡脉动过程

    Figure  5.  The in-phase double bubble pulsation process in the free field for δ=0.05

    图  6  δ=0.20时的自由场同相双气泡脉动过程

    Figure  6.  The in-phase double bubble pulsation process in the free field for δ=0.20

    图  7  不同理论计算[18-19]及不同浮力参数下的流场压力时历曲线

    Figure  7.  Histories of flow-field pressure under different theoretical calculations[18-19] and different buoyancy parameters

    图  8  不同理论计算及不同浮力参数下的气泡半径时历曲线

    Figure  8.  Histories of bubble radii under different theoretical calculations and different buoyancy parameters

    图  9  不同理论计算及不同浮力参数下的气泡迁移时历曲线

    Figure  9.  Histories of bubble migration under different theoretical calculations and different buoyancy parameters

    图  10  δ=0.05, 0.10, 0.15和0.20时的双气泡射流速度时程

    Figure  10.  Double bubble jet velocity histories for δ=0.05, 0.10, 0.15 and 0.20

    图  11  ε=200时的自由场同相双气泡脉动过程

    Figure  11.  The in-phase double bubble pulsation process in the free field for ε=200

    图  12  不同强度参数下的流场压力时历曲线

    Figure  12.  Histories of bubble radii under different strength parameters

    图  13  不同强度参数下的气泡半径时历曲线

    Figure  13.  Histories of bubble radii under different strength parameters

    图  14  不同强度参数下的气泡迁移时历曲线

    Figure  14.  Histories of bubble migration under different strength parameters

    图  15  ε=50, 100, 150和200时气泡射流速度时程

    Figure  15.  Double bubble jet velocity histories for ε=50, 100, 150 and 200

    表  1  基本物理量的无量纲化

    Table  1.   Non-dimensionalization of fundamental physical quantities

    time velocity mass acceleration internal energy
    $ R_{\mathrm{m}} \sqrt{\frac{\rho_{\mathrm{w}}}{P_{\infty}}}$ $ \sqrt{\frac{P_{\infty}}{\rho_{\mathrm{w}}}}$ $ \rho_{\mathrm{w}} R_{\mathrm{m}}^3$ $ \frac{P_{\infty}}{R_{\mathrm{m}} \rho_{\mathrm{w}}}$ $ P_{\infty} R_{\mathrm{m}}^3$
    下载: 导出CSV

    表  2  气泡1水平方向最大长度及其出现时刻实验[47]与数值结果对比

    Table  2.   Comparison of the maximum length of bubble 1 in the horizontal direction and its appearance time between experimental results[47] and numerical results

    bubble 1 experimental result[47] numerical result error
    maximum length in the horizontal direction 13.8 mm 14.8 mm 7.2%
    appearance time of the maximum length 1.473 ms 1.533 ms 4.1%
    下载: 导出CSV

    表  3  气泡最大半径及迁移误差对比

    Table  3.   Comparison of relative errors of maximum bubble radii and migrations

    parameter error
    Le=0.01Rm Le=0.02Rm Le=0.04Rm
    maximum radius of bubble1 1.59% 2.01% 2.27%
    maximum migration of bubble 1 1.81% 7.84% 19.25%
    maximum radius of bubble 2 1.97% 2.23% 2.49%
    maximum migration of bubble 2 8.84% 4.96% 18.35%
    下载: 导出CSV

    表  4  不同计算情况下气泡1的脉动周期和最小半径对比

    Table  4.   Comparison of pulsation periods and minimum radii of bubble 1 under different calculations

    case pulsation period of bubble 1 minimum radius of bubble 1
    unified bubble equation[19], δ=0.05 2.240 0.219
    Keller equation[18], δ=0.05 2.243 0.206
    EFEM, δ=0.05 2.219 0.246
    EFEM, δ=0.10 2.201 0.223
    EFEM, δ=0.15 2.155 0.192
    EFEM, δ=0.20 2.106 0.168
    下载: 导出CSV

    表  5  不同计算情况下气泡2的脉动周期, 最小和最大半径对比

    Table  5.   Comparison of pulsation periods, minimum and maximum radii of bubble 2 under different calculations

    case pulsation period of bubble 2 minimum radius of bubble 2 maximum radius of bubble 2
    unified bubble equation[19], δ=0.05 2.225 0.231 0.999
    Keller equation[18], δ=0.05 2.228 0.216 0.999
    EFEM, δ=0.05 2.212 0.255 0.993
    EFEM, δ=0.10 2.162 0.270 0.979
    EFEM, δ=0.15 2.069 0.282 0.953
    EFEM, δ=0.20 1.954 0.289 0.922
    下载: 导出CSV

    表  6  不同强度参数下的压力峰值对比

    Table  6.   Comparison of pressure peaks under different strength parameters

    strength parameter shockwave pressure pressure peak value of bubble pulsation
    the 1st peak value the 2nd peak value
    ε=50 3.668 5.560 3.182
    ε=100 5.282 7.663 3.889
    ε=150 6.601 9.040 4.327
    ε=200 7.764 10.090 4.690
    下载: 导出CSV

    表  7  不同强度参数下气泡1和气泡2的脉动周期和最小半径对比

    Table  7.   Comparison of pulsation periods and maximum radii of bubbles 1 and 2 under different strength parameters

    strength parameter bubble 1 bubble 2
    pulsation period minimum bubble radius pulsation period minimum bubble radius
    ε=50 2.242 0.262 2.205 0.307
    ε=100 2.201 0.223 2.163 0.270
    ε=150 2.177 0.204 2.138 0.251
    ε=200 2.169 0.193 2.131 0.240
    下载: 导出CSV
  • [1] LI S, MEER D V D, ZHANG A M, et al. Modelling large scale airgun-bubble dynamics with highly non-spherical features[J]. International Journal of Multiphase Flow, 2020, 122 : 103143. doi: 10.1016/j.ijmultiphaseflow.2019.103143
    [2] LANGHAMMER J, LANDRØ M. High-speed photography of the bubble generated by an airgun[J]. Geophysical Prospecting, 1996, 44 (1): 153-172. doi: 10.1111/j.1365-2478.1996.tb00143.x
    [3] CUI P, ZHANG A M, WANG S P. Shock wave emission and ice breaking effect of multiple interacting bubbles[J]. Ocean Engineering, 2021, 234 : 109175. doi: 10.1016/j.oceaneng.2021.109175
    [4] CUI P, ZHANG A M, WANG S P, et al. Experimental study on interaction, shock wave emission and ice breaking of two collapsing bubbles[J]. Journal of Fluid Mechanics, 2020, 897 : A25. doi: 10.1017/jfm.2020.400
    [5] PITT W, HUSSEINI G, STAPLES B. Ultrasonic drug delivery: a general review[J]. Expert Opinion on Drug Delivery, 2004, 1 (1): 37-56. doi: 10.1517/17425247.1.1.37
    [6] CHEN H, HWANG J. Ultrasound-targeted microbubble destruction for chemotherapeutic drug delivery to solid tumors[J]. Journal of Therapeutic Ultrasound, 2013, 1 (1): 10. doi: 10.1186/2050-5736-1-10
    [7] 张阿漫, 明付仁, 刘云龙, 等. 水下爆炸载荷特性及其作用下的舰船毁伤与防护研究综述[J]. 中国舰船研究, 2023, 18 (3): 139-154. https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG202303014.htm

    ZHANG Aman, MING Furen, LIU Yunlong, et al. Review of research on underwater explosion related to load characteristics and ship damage and protection[J]. Chinese Journal of Ship Research, 2023, 18 (3): 139-154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG202303014.htm
    [8] 陈岩武, 孙远翔, 王成. 水下爆炸载荷下舰船双层底部结构的毁伤特性[J]. 兵工学报, 2023, 44 (3): 670-681. https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO202303004.htm

    CHEN Yanwu, SUN Yuanxiang, WANG Cheng. Damage characteristics of ships double bottom structure subjected to underwater explosion[J]. Acta Armamentarii, 2023, 44 (3): 670-681. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BIGO202303004.htm
    [9] 闫秋实, 常松, 李述涛. "北溪"天然气管道爆炸毁伤探讨与分析[J]. 防护工程, 2022, 44 (6): 1-6. doi: 10.3969/j.issn.1674-1854.2022.06.001

    YAN Qiushi, CHANG Song, LI Shutao. Exploration and analysis on explosion damage of "Beixi" natural gas pipeline[J]. Protective Engineering, 2022, 44 (6): 1-6. (in Chinese) doi: 10.3969/j.issn.1674-1854.2022.06.001
    [10] TIAN Z L, LIU Y L, ZHANG A M, et al. Analysis of breaking and re-closure of a bubble near a free surface based on the Eulerian finite element method[J]. Computers & Fluids, 2018, 170 : 41-52.
    [11] TONG S Y, ZHANG S, WANG S P, et al. Characteristics of the bubble-induced pressure, force, and impulse on a rigid wall[J]. Ocean Engineering, 2022, 255 : 111484. doi: 10.1016/j.oceaneng.2022.111484
    [12] 吕可, 邹佳俊, 陈颖, 等. 近刚性壁面异相双气泡耦合及射流增强效应研究[J]. 力学学报, 2023, 55 (8): 1605-1617. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202308001.htm

    LÜ Ke, ZOU Jiajun, CHEN Ying, et al. Study on the interaction and jet enhancement effect of two out-of-phase bubbles near a rigid boundary[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55 (8): 1605-1617. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB202308001.htm
    [13] 王诗平, 张阿漫, 刘云龙, 等. 同相气泡耦合特性实验研究[J]. 力学学报, 2012, 44 (1): 56-64. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201201010.htm

    WANG Shiping, ZHANG Aman, LIU Yunlong, et al. Experimental study on interaction of inphase bubbles[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44 (1): 56-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201201010.htm
    [14] FONG S W, ADHIKARI D, KLASEBOER E, et al. Interactions of multiple spark-generated bubbles with phase differences[J]. Experiments in Fluids, 2009, 46 : 705-724. doi: 10.1007/s00348-008-0603-4
    [15] AVACHAT S, ZHOU M. Response of submerged metallic sandwich structures to underwater impulsive loads[J]. Journal of Mechanics of Materials, 2015, 10 (1): 17-41.
    [16] HIGDON C E. Water barrier ship self defense lethality[J]. Naval Engineers Journal, 2010, 112 (4): 121-135.
    [17] MAKUTA T, TAKEMURA F, HIHARA E, et al. Generation of micro gas bubbles of uniform diameter in an ultrasonic field[J]. Journal of Fluid Mechanics, 2006, 548 : 113-131.
    [18] KELLER J B, MIKSIS M J. Bubble oscillations of large amplitude[J]. Journal of Acoustical Society of America, 1980, 68 : 628-633.
    [19] ZHANG A M, LI S M, CUI P, et al. A unified theory for bubble dynamics[J]. Physics of Fluids, 2023, 35 (3): 28.
    [20] ZHANG A M, LI S M, CUI P, et al. Theoretical study on bubble dynamics under hybrid-boundary and multi-bubble conditions using the unified equation[J]. Science China: Physics Mechanics & Astronomy, 2023, 66 (12): 16. http://www.zhangqiaokeyan.com/academic-journal-cn_science-china-information-sciences_thesis/02012116945541.html
    [21] ZHANG A M, LI S M, CUI P, et al. Interactions between a central bubble and a surrounding bubble cluster[J]. Theoretical and Applied Mechanics Letters, 2023, 13 (3): 100438.
    [22] 谈乃正, 李世民, 詹立蕾, 等. 基于气泡统一方程的声场双气泡耦合作用研究[J]. 哈尔滨工程大学学报, 2024, 45 (2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202402001.htm

    TAN Naizheng, LI Shimin, ZHAN Lilei, et al. A study on the coupling effect of double bubbles in sound field based on the unified equation for bubble dynamics[J]. Journal of Harbin Engineering University, 2024, 45 (2): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202402001.htm
    [23] LI S M, ZHANG A M, CUI P, et al. Vertically neutral collapse of a pulsating bubble at the corner of a free surface and a rigid wall[J]. Journal of Fluid Mechanics, 2023, 962 : 41.
    [24] LI S, ZHANG A M, HAN R. 3D model for inertial cavitation bubble dynamics in binary immiscible fluids[J]. Journal of Computational Physics, 2023, 494 : 112508.
    [25] 黄晓婷, 孙鹏楠, 彭玉祥, 等. 基于新型轴对称无网格方法的水下爆炸冲击波和气泡运动数值模拟[J]. 同济大学学报(自然科学版), 2023, 51 (6): 818-826. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202306003.htm

    HUANG Xiaoting, SUN Pengnan, PENG Yuxiang, et al. Numerical simulation of underwater explosion shock waves and bubbles based on a novel axisymmetric meshless method[J]. Journal of Tongji University(Natural Science), 2023, 51 (6): 818-826. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202306003.htm
    [26] LI M K, ZHANG A M, MING F R, et al. A coupled smoothed particle hydrodynamics-finite volume method for three-dimensional modeling of bubble dynamics[J]. Physics of Fluids, 2023, 35 (5): e17922.
    [27] ZHANG Y F, LIU L T, WANG J X, et al. Study on the impact characteristics of underwater explosion bubble jets induced by plate structure[J]. Ocean Engineering, 2022, 266 : 19.
    [28] GONG S W. Transient response of stiffened composite submersible hull to underwater shock and bubble[J]. Composite Structures, 2019, 213 : 243-251.
    [29] XU L Y, TIAN Y, LIU X B, et al. Numerical investigation on jet penetration capacity of hypervelocity shaped charge in underwater explosion[J]. Ocean Engineering, 2023, 281 : 114668.
    [30] HE M, LIU Y L, ZHANG S, et al. Research on characteristics of deep-sea implosion based on Eulerian finite element method[J]. Ocean Engineering, 2022, 244 : 110270.
    [31] TIAN Z L, LIU Y L, ZHANG A M, et al. Energy dissipation of pulsating bubbles in compressible fluids using the Eulerian finite-element method[J]. Ocean Engineering, 2020, 196 : 106714.
    [32] LIU W T, MING F R, ZHANG A M, et al. Continuous simulation of the whole process of underwater explosion based on Eulerian finite element approach[J]. Applied Ocean Research, 2018, 80 : 125-135.
    [33] HE M, WANG S P, REN S F, et al. Numerical study of effects of stand-off distance and gravity on large scale bubbles near a breach[J]. Applied Ocean Research, 2021, 117 (3): 102946.
    [34] TANG H, LIU Y L, CUI P, et al. Numerical study on the bubble dynamics in a broken confined domain[J]. Journal of Hydrodynamics, 2020, 32 (6): 1029-1042.
    [35] LIU W T, ZHANG A M, MIAO X H, et al. Investigation of hydrodynamics of water impact and tail slamming of high-speed water entry with a novel immersed boundary method[J]. Journal of Fluid Mechanics, 2023, 958 : A42.
    [36] 唐皓, 刘云龙, 冯集团, 等. 水下爆炸异相气泡动力学特性的Euler有限元数值模拟研究[J]. 应用数学和力学, 2023, 44 (8): 895-908. doi: 10.21656/1000-0887.440047

    TANG Hao, LIU Yunlong, FENG Jituan, et al. Eulerian finite-element numerical simulation investigation on the dynamic characteristics of out-of-phase bubbles in underwater explosions[J]. Applied Mathematics and Mechanics, 2023, 44 (8): 895-908. (in Chinese) doi: 10.21656/1000-0887.440047
    [37] LIU N N, ZHANG A M, LIU Y L, et al. Numerical analysis of the interaction of two underwater explosion bubbles using the compressible Eulerian finite-element method[J]. Physics of Fluids, 2020, 32 : 046107.
    [38] HAN R, ZHANG A M, LI S, et al. Experimental and numerical study of the effects of a wall on the coalescence and collapse of bubble pairs[J]. Physics of Fluids, 2018, 30 (4): 042107.
    [39] LI S, ZHANG A M, HAN R, et al. Experimental and numerical study of two underwater explosion bubbles: coalescence, fragmentation and shock wave emission[J]. Ocean Engineering, 2019, 190 : 106414.
    [40] ZHANG A M, WANG S P, HUANG C, et al. Influences of initial and boundary conditions on underwater explosion bubble dynamics[J]. European Journal of Mechanics B: Fluids, 2013, 42 : 69-91.
    [41] WANG C, KHOO B C. An indirect boundary element method for three-dimensional explosion bubbles[J]. Journal of Computational Physics, 2004, 19 (4): 451-480.
    [42] ZHANG A M, LIU Y L. Improved three-dimensional bubble dynamics model based on boundary element method[J]. Journal of Computational Physics, 2015, 294 : 208-223.
    [43] LI S, KHOO B C, ZHANG A M, et al. Bubble-sphere interaction beneath a free surface[J]. Ocean Engineering, 2018, 169 : 469-483.
    [44] BENSON D J, OKAZAWA S. Contact in a multi-material Eulerian finite element formulation[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193 (39): 4277-4298.
    [45] LIU Y L, ZHANG A M, TIAN Z L, et al. Dynamical behavior of an oscillating bubble initially between two liquids[J]. Physics of Fluids, 2019, 31 : 09211.
    [46] LIU Y L, ZHANG A M, TIAN Z L, et al. Investigation of free-field underwater explosion with Eulerian finite element method[J]. Ocean Engineering, 2018, 166 : 182-190.
    [47] 佟施宇. 近场水下爆炸与典型结构耦合特性实验与数值研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.

    TONG Shiyu. Experimental and numerical study on coupling characteristics of near-field underwater explosion and typical structures[D]. Harbin: Harbin Engineering University, 2022. (in Chinese)
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  140
  • HTML全文浏览量:  52
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-25
  • 修回日期:  2024-04-02
  • 刊出日期:  2024-07-01

目录

    /

    返回文章
    返回