留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间分数阶导数的强-弱非局部连续介质本构建模

方俊 吴一石

方俊, 吴一石. 基于空间分数阶导数的强-弱非局部连续介质本构建模[J]. 应用数学和力学, 2025, 46(6): 764-780. doi: 10.21656/1000-0887.450073
引用本文: 方俊, 吴一石. 基于空间分数阶导数的强-弱非局部连续介质本构建模[J]. 应用数学和力学, 2025, 46(6): 764-780. doi: 10.21656/1000-0887.450073
FANG Jun, WU Yishi. Strong-Weak Non-Local Medium Constitutive Modeling Based on the Spatial Fractional Derivative[J]. Applied Mathematics and Mechanics, 2025, 46(6): 764-780. doi: 10.21656/1000-0887.450073
Citation: FANG Jun, WU Yishi. Strong-Weak Non-Local Medium Constitutive Modeling Based on the Spatial Fractional Derivative[J]. Applied Mathematics and Mechanics, 2025, 46(6): 764-780. doi: 10.21656/1000-0887.450073

基于空间分数阶导数的强-弱非局部连续介质本构建模

doi: 10.21656/1000-0887.450073
基金项目: 

江苏省高校自然科学基金(面上项目)(21KJB510005)

详细信息
    作者简介:

    方俊(1986—),男,副教授,博士(通讯作者. E-mail: 346801730@qq.com).

    通讯作者:

    方俊(1986—),男,副教授,博士(通讯作者. E-mail: 346801730@qq.com).

  • 中图分类号: O345|O302

Strong-Weak Non-Local Medium Constitutive Modeling Based on the Spatial Fractional Derivative

  • 摘要: 研究了以空间分数阶导数为基础的非局部介质本构建模方法,为研究复杂非局部材料的力学性能提供了理论指导.首先,通过扩展Chen-Holm分数阶Laplace算子的定义,得到了新型0~4阶空间分数阶导数算子.然后,基于强-弱非局部连续介质理论,建立了含该算子的非局部介质本构关系,并以此构建了新的力学元件.通过对力学元件的不同组合,可以得到几类非局部分数阶导数本构模型:Kelvin模型、Maxwell模型和Zener模型.此后,基于散射波方程与介质本构方程之间的关联性,确定了模型各参数的表达式及物理意义,并研究了部分模型的蠕变和应力松弛.最后,通过含砂软土蠕变的实例研究,验证了非局部Kelvin模型的有效性.
  • 陈荟键, 朱清锋, 苗鸿臣, 等. 受载结构中SH0波与裂纹作用的非线性散射场的数值研究[J]. 应用数学和力学, 2023,44(4): 367-380.

    (CHEN Huijian, ZHU Qingfeng, MIAO Hongchen, et al. Numerical study of nonlinear scattering characteristics of SH0 waves encountering cracks in prestressed plates[J].Applied Mathematics and Mechanics,2023,44(4): 367-380. (in Chinese))
    [2]邓健, 肖鹏程, 王增贤, 等. 基于黏聚区模型的ENF试件层间裂纹扩展分析[J]. 应用数学和力学, 2022,43(5): 515-523. (DENG Jian, XIAO Pengcheng, WANG Zengxian, et al. Interlaminar crack propagation analysis of ENF specimens based on the cohesive zone model[J].Applied Mathematics and Mechanics,2022,43(5): 515-523. (in Chinese))
    [3]MENG C, WEI H, CHEN H, et al. Modeling plasticity of cubic crystals using a nonlocal lattice particle method[J].Computer Methods in Applied Mechanics and Engineering,2021,385: 114069.
    [4]FU L, ZHOU X P, BERTO F. A three-dimensional non-local lattice bond model for fracturing behavior prediction in brittle solids[J].International Journal of Fracture,2022,234(1/2): 297-311.
    [5]SHEYKHI M, ESKANDARI A, GHAFARI D, et al. Investigation of fluid viscosity and density on vibration of nano beam submerged in fluid considering nonlocal elasticity theory[J].Alexandria Engineering Journal,2023,65: 607-614.
    [6]TARASOV V E. General non-local electrodynamics: equations and non-local effects[J].Annals of Physics,2022,445: 169082.
    [7]ESEN I, DAIKH A A, ELTAHER M A. Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load [J].The European Physical Journal Plus,2021,136(4): 1-22.
    [8]田娅, 秦瑶, 向晶. 一类带有变指数非局部项的反应扩散方程解的爆破行为[J]. 应用数学和力学, 2022,43(10): 1177-1184. (TIAN Ya, QIN Yao, XIANG Jing. Blow-up behaviors of solutions to reaction-diffusion equations with nonlocal sources and variable exponents[J].Applied Mathematics and Mechanics,2022,43(10): 1177-1184. (in Chinese))
    [9]KRUMHANSL J A. Generalized continuum field representations for lattice vibrations[J].Solid State Communications,1963,1(6): 198.
    [10]ERINGEN A C, WEGNER J L. Nonlocal continuum field theories[J].Applied Mechanics Reviews,2003,56(2): B20-B22.
    [11]AIFANTIS E C. On the role of gradients in the localization of deformation and fracture[J].International Journal of Engineering Science,1992,30(10): 1279-1299.
    [12]LIM C W, ZHANG G, REDDY J N. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation[J].Journal of the Mechanics and Physics of Solids,2015,78: 298-313.
    [13]LAZOPOULOS K A. Non-local continuum mechanics and fractional calculus[J].Mechanics Research Communications,2006,33(6): 753-757.
    [14]CARPINTERI A, CORNETTI P, SAPORA A. Nonlocal elasticity: an approach based on fractional calculus[J].Meccanica,2014,49(11): 2551-2569.
    [15]VAIYAPURI S. Fractional derivative analysis of wave propagation studies using eringen’s nonlocal model with elastic medium support[J].Journal of Vibration Engineering & Technologies,2022,11(8): 3677-3685.
    [16]庞国飞, 陈文. 基于Riesz势空间分数阶算子的非局部粘弹性力学元件[J]. 固体力学学报, 2017,38(1): 47-54. (PANG Guofei, CHEN Wen. Nonlocal viscoelastic elements based on Riesz potential space-fractional operator[J].Chinese Journal of Solid Mechanics,2017,38(1): 47-54. (in Chinese))
    [17]TARASOV V E, AIFANTIS E C. Non-standard extensions of gradient elasticity: fractional non-locality, memory and fractality[J].Communications in Nonlinear Science and Numerical Simulation,2015,22(1/2/3): 197-227.
    [18]TARASOV V E. General non-local continuum mechanics: derivation of balance equations[J].Mathematics,2022,10(9): 1427.
    [19]WU X, WEN Z, JIN Y, et al. Broadband Rayleigh wave attenuation by gradient metamaterials[J].International Journal of Mechanical Sciences,2021,205: 106592.
    [20]HOLM S, NASHOLM S P. Comparison of fractional wave equations for power law attenuation in ultrasound and elastography[J].Ultrasound in Medicine & Biology,2014,40(4): 695-703.
    [21]HOLM S, NASHOLM S P. A causal and fractional all-frequency wave equation for lossy media[J].The Journal of the Acoustical Society of America,2011,130(4): 2195-2202.
    [22]SAMKO S G, KILBAS A A, MARICEV O I. Fractional integrals and derivations and some applications[J].Minsk: Nauka I Tekhnika,1993,3: 397-414.
    [23]CHEN W, HOLM S. Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency[J].The Journal of the Acoustical Society of America,2004,115(4): 1424-1430.
    [24]BUCKINGHAM M J. Wave-speed dispersion associated with an attenuation obeying a frequency power law[J].The Journal of the Acoustical Society of America,2015,138(5): 2871-2884.
    [25]AIFANTIS E C. On the gradient approach-relation to Eringen’s nonlocal theory[J].International Journal of Engineering Science,2011,49(12): 1367-1377.
    [26]ASRARI R, EBRAHIMI F, KHEIRIKHAH M M, SAFARI K H. Buckling analysis of heterogeneous magneto-electro-thermo-elastic cylindrical nanoshells based on nonlocal strain gradient elasticity theory[J].Mechanics Based Design of Structures and Machines,2022,50(3): 817-840.
    [27]AIFANTIS E C. Fractional generalizations of gradient mechanics[M]//TARASOV V E.Handbook of Fractional Calculus With Applications,2019: 241-262.
    [28]CHEN W, FANG J, PANG G, et al. Fractional biharmonic operator equation model for arbitrary frequency-dependent scattering attenuation in acoustic wave propagation[J].The Journal of the Acoustical Society of America,2017,141(1): 244-253.
    [29]TREEBY B E, COX B T. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian[J].The Journal of the Acoustical Society of America,2010,127(5): 2741-2748.
    [30]HOLM S, NSHOLM S P, PRIEUR F, et al. Deriving fractional acoustic wave equations from mechanical and thermal constitutive equations[J].Computers & Mathematics With Applications,2013,66(5): 621-629.
    [31]KHOKHLOV N, FAVORSKAYA A, STETSYUK V, et al. Grid-characteristic method using Chimera meshes for simulation of elastic waves scattering on geological fractured zones[J].Journal of Computational Physics,2021,446: 110637.
    [32]OHARA Y, REMILLIEUX M C, ULRICH T J, et al. Exploring 3D elastic-wave scattering at interfaces using high-resolution phased-array system[J].Scientific Reports,2022,12: 8291.
    [33]方俊. 超声无损检测中声波散射衰减的分数阶导数建模研究[J]. 冶金与材料, 2019,39(1): 7-11. (FANG Jun. Fractional derivative modeling of frequency dependent scattering attenuation in ultrasonic non-destructive testing[J].Metallurgy and Materials,2019,39(1): 7-11. (in Chinese))
    [34]孙海忠, 张卫. 一种分析软土黏弹性的分数导数开尔文模型[J]. 岩土力学, 2007,28(9): 1983-1986. (SUN Haizhong, ZHANG Wei. Analysis of soft soil with viscoelastic fractional derivative Kelvin model[J].Rock and Soil Mechanics,2007,28(9): 1983-1986. (in Chinese))
  • 加载中
计量
  • 文章访问数:  13
  • HTML全文浏览量:  1
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-22
  • 修回日期:  2024-05-06
  • 网络出版日期:  2025-06-30

目录

    /

    返回文章
    返回