留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于长短期记忆网络的区间不确定性动态载荷识别方法

王磊 程辽辽 胡举喜 顾凯旋 刘英良

王磊, 程辽辽, 胡举喜, 顾凯旋, 刘英良. 基于长短期记忆网络的区间不确定性动态载荷识别方法[J]. 应用数学和力学, 2025, 46(8): 959-972. doi: 10.21656/1000-0887.450152
引用本文: 王磊, 程辽辽, 胡举喜, 顾凯旋, 刘英良. 基于长短期记忆网络的区间不确定性动态载荷识别方法[J]. 应用数学和力学, 2025, 46(8): 959-972. doi: 10.21656/1000-0887.450152
WANG Lei, CHENG Liaoliao, HU Juxi, GU Kaixuan, LIU Yingliang. A Long Short-Term Memory Networks Based Method for Force Reconstruction With Interval Uncertainties[J]. Applied Mathematics and Mechanics, 2025, 46(8): 959-972. doi: 10.21656/1000-0887.450152
Citation: WANG Lei, CHENG Liaoliao, HU Juxi, GU Kaixuan, LIU Yingliang. A Long Short-Term Memory Networks Based Method for Force Reconstruction With Interval Uncertainties[J]. Applied Mathematics and Mechanics, 2025, 46(8): 959-972. doi: 10.21656/1000-0887.450152

基于长短期记忆网络的区间不确定性动态载荷识别方法

doi: 10.21656/1000-0887.450152
基金项目: 

国防基础科研计划项目 JCKY2019205A006

详细信息
    通讯作者:

    王磊(1987—),男,副教授,博士,博士生导师(通讯作者. E-mail: leiwang_beijing@buaa.edu.cn)

  • 中图分类号: O342

A Long Short-Term Memory Networks Based Method for Force Reconstruction With Interval Uncertainties

  • 摘要: 针对传统神经网络在处理时间依赖性动态过程和含噪数据时的不稳定性问题,提出了一种基于长短期记忆网络动态力重构方法. 测量响应信号经噪声污染后,被归一化为输入变量;而归一化的动态载荷则作为输出变量. 长短期记忆网络的实现方法被采用. 为了提高网络的泛化能力,不同类型的动力响应和原始载荷被定义为每个时刻的样本结构. 考虑区间不确定性,在传统配点法的基础上调整配点策略得到逐维法,在研究某一维度不确定性变量时固定其他维度,可以高精度地解决区间变量相互独立的不确定性载荷识别问题. 最后,采用数值算例与传统神经网络(BP神经网络)对比,表征长短期记忆网络在含噪数据的处理上更为稳定,设计试验证实了对于时间依赖性的数据,该方法的有效性和可行性.
  • 图  1  LSTM神经网络

    Figure  1.  The LSTM neural network

    图  2  DWM配点方案

    Figure  2.  The matching points layout of the dimension-wise method

    图  3  基于DWM的载荷识别流程图

    Figure  3.  The flowchart of load identification based on the dimension-wise method

    图  4  悬臂板传感器分布

    Figure  4.  The distribution of cantilever plate structure sensors

    图  5  悬臂板边界条件

    Figure  5.  Boundary conditions of the cantilever plate structure

    图  6  不同传感器布局下的力重构结果

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  6.  Results of force reconstruction under different sensor layouts

    图  7  训练集的载荷样本

    Figure  7.  Load samples for the training set

    图  8  初始样本训练过程收敛曲线

    Figure  8.  Convergence curves of the initial data training process

    图  9  噪声影响下训练集的响应样本

    Figure  9.  Response samples of the training set under the influence of noise

    图  10  含噪样本训练过程收敛曲线

    Figure  10.  Convergence curves of the noise affected data training process

    图  11  不同噪声条件下利用LSTM网络和BP神经网络进行力重构的结果

    Figure  11.  Results of force reconstruction by LSTM and BP under noisy conditions

    图  12  利用DWM进行不确定性传播分析的重构载荷边界

    Figure  12.  Results of force boundaries with the dimension-wise method for uncertainty propagation

    图  13  动态载荷实验模型

    Figure  13.  The dynamic load experimental model

    图  14  悬臂板传感器布置

    Figure  14.  The cantilever plate structure sensor arrangement

    图  15  不同工况下的动态载荷识别

    Figure  15.  Identification of dynamic forces under different operating conditions

    表  1  悬臂板材料参数

    Table  1.   Cantilever plate structure material parameters

    material property symbol specific value
    Young’s modulus E/GPa 210
    Poisson’s ratio ν 0.3
    density ρ/(kg/m3) 7 800
    下载: 导出CSV

    表  2  神经网络训练集与测试集载荷

    Table  2.   The expressions of actual dynamic forces of training sets and test sets

    condition actual dynamic force expression
    training set sample 1 F=100sin(20πt)+50sin(10πt)
    sample 2 F=300sin(40πt2)
    sample 3 F=300e-4tsin(20πt)
    sample 4 F=350e-6tsin(50πt2)
    sample 5 F=250e-10t
    test set - F=200sin(20πt)
    下载: 导出CSV

    表  3  不同传感器布局下力重构的总相对误差

    Table  3.   Relative errors of force reconstruction with different sensor layouts

    sensor selection relative error/%
    1, 2, 3, 4, 5, 6 8.79
    1, 2, 3, 4 7.89
    1, 2, 3 13.75
    1, 4, 6, 9 8.05
    1, 3, 6, 7 9.12
    1, 6, 7, 9 8.92
    下载: 导出CSV

    表  4  初始样本和含噪样本回归的LSTM架构概要

    Table  4.   Summary of the LSTM architecture for initial and noise affected data regression

    layer(type) number of parameters (original data) number of parameters (noise affected data)
    sequence input layer 20 60
    Bi-LSTM layer 100(hidden layer unit) 128(hidden layer unit)
    fully connected layer 300 300
    dropout layer 0.2(probability) 0.8(probability)
    fully connected layer 1(response) 1(response)
    regression layer - -
    下载: 导出CSV

    表  5  不同噪声条件下利用LSTM网络和BP神经网络进行力重构的相对误差

    Table  5.   Relative errors of force reconstruction by LSTM and BP under noisy conditions

    SNR of additive noise LSTM/% BP/%
    20 8.78 26.29
    20, 30 18.00 41.43
    20, 30, 40 18.31 41.39
    下载: 导出CSV

    表  6  不同工况下的动态载荷识别总相对误差

    Table  6.   Total relative errors of dynamic load recognition under different operating conditions

    state temperature/℃ frequency/Hz relative error/%
    post-impact 60 3 3.98
    pre-impact 100 5 4.44
    post-impact 150 1 4.72
    下载: 导出CSV
  • [1] BARTLETT F D, FLANNELLY W G. Model verification of force determination for measuring vibratory loads[J]. Journal of the American Helicopter Society, 1979, 24 (2): 10-18.
    [2] KREITINGER T J. Force identification from structural response[D]. University of New Mexico, 1989.
    [3] ÖDEEN S, LUNDBERG B. Prediction of impact force by impulse response method[J]. International Journal of Impact Engineering, 1991, 11 (2): 149-158.
    [4] DOYLE J F. A wavelet deconvolution method for impact force identification[J]. Experimental Mechanics, 1997, 37 (4): 403-408.
    [5] MITRA M, GOPALAKRISHNAN S. Spectrally formulated wavelet finite element for wave propagation and impact force identification in connected 1-D waveguides[J]. International Journal of Solids and Structures, 2005, 42 (16/17): 4695-4721.
    [6] DOYLE J F. Reconstructing dynamic events from time-limited spatially distributed data[J]. International Journal for Numerical Methods in Engineering, 2002, 53 (12): 2721-2734.
    [7] GIANSANTE N, JONES R, CALAPODAS N J. Determination of in-flight helicopter loads[J]. Journal of the American Helicopter Society, 1981, 27 (3): 58-64.
    [8] CHAO M, FENG X. The identification of external forces for a nonlinear vibration system in frequency domain[J]. Proceedings of the Institution of Mechanical Engineers (Part C): Journal of Mechanical Engineering Science, 2014, 228 (9): 1531-1539. doi: 10.1177/0954406213509085
    [9] LIU Y, SHEPARD W S. Dynamic force identification based on enhanced least squares and total least-squares schemes in the frequency domain[J]. Journal of Sound and Vibration, 2005, 282 (1/2): 37-60.
    [10] HILLARY B, EWINS D J. The use of strain gauges in force determination and frequency response function measurements[C]//Proceedings of IMAC. 1984.
    [11] HOLZDEPPE D, ÖRY H. Reconstruction of instationary wind load distribution on structures from measured structural response time histories[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1988, 28 (1/2/3): 231-240.
    [12] 张方, 朱德懋. 基于神经网络模型的动载荷识别[J]. 振动工程学报, 1997, 10 (2): 40-46.

    ZHANG Fang, ZHU Demao. The dynamic load identification research based on neural network model[J]. Journal of Vibration Engineering, 1997, 10 (2): 40-46. (in Chinese)
    [13] CAO X, SUGIYAMA Y, MITSUI Y. Application of artificial neural networks to load identification[J]. Computers & Structures, 1998, 69 (1): 63-78.
    [14] 李忠献, 陈锋, 王波. 基于BP神经网络的桥上移动荷载分阶段识别方法[J]. 工程力学, 2008, 25 (9): 85-92.

    LI Zhongxian, CHEN Feng, WANG Bo. A BP neural network-based stage identification method for moving loads on bridges[J]. Engineering Mechanics, 2008, 25 (9): 85-92. (in Chinese)
    [15] LIU Y, WANG L, GU K, et al. Artificial neural network (ANN)-Bayesian probability framework (BPF) based method of dynamic force reconstruction under multi-source uncertainties[J]. Knowledge-Based Systems, 2022, 237: 107796.
    [16] 夏鹏, 杨特, 徐江, 等. 利用时延神经网络的动载荷倒序识别[J]. 航空学报, 2021, 42 (7): 224452.

    XIA Peng, YANG Te, XU Jiang, et al. Reversed time sequence dynamic load identification method using time delay neural network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42 (7): 224452. (in Chinese)
    [17] YANG H, JIANG J, CHEN G, et al. Dynamic load identification based on deep convolution neural network[J]. Mechanical Systems and Signal Processing, 2023, 185: 109757.
    [18] 张巧灵, 高淑萍, 何迪, 等. 基于时间序列的混合神经网络数据融合算法[J]. 应用数学和力学, 2021, 42 (1): 82-91. doi: 10.21656/1000-0887.410056

    ZHANG Qiaoling, GAO Shuping, HE Di, et al. A hybrid neural network data fusion algorithm based on time series[J]. Applied Mathematics and Mechanics, 2021, 42 (1): 82-91. (in Chinese) doi: 10.21656/1000-0887.410056
    [19] WANG L, REN Q, MA Y, et al. Optimal maintenance design-oriented nonprobabilistic reliability methodology for existing structures under static and dynamic mixed uncertainties[J]. IEEE Transactions on Reliability, 2019, 68 (2): 496-513. doi: 10.1109/TR.2018.2868773
    [20] WANG L, LIU Y. A novel method of distributed dynamic load identification for aircraft structure considering multi-source uncertainties[J]. Structural and Multidisciplinary Optimization, 2020, 61 (5): 1929-1952. doi: 10.1007/s00158-019-02448-8
    [21] AVEN T, BARALDI P, FLAGE R, et al. Uncertainty in Risk Assessment: the Representation and Treatment of Uncertainties by Probabilistic and Non-Probabilistic Methods[M]. West Sussex, United Kingdom: John Wiley & Sons, 2014.
    [22] QIU Z, WANG X. Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach[J]. International Journal of Solids and Structures, 2003, 40 (20): 5423-5439.
    [23] MOENS D, VANDEPITTE D. A survey of non-probabilistic uncertainty treatment in finite element analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194 (12/13/14/15/16): 1527-1555.
    [24] SHEN Y, LIN W. Collocation method for the natural boundary integral equation[J]. Applied Mathematics Letters, 2006, 19 (11): 1278-1285.
    [25] WANG L, CHENG L, XU H, et al. Multi-source uncertainty-oriented dynamic force reconstruction framework based on adaptive fitting precise integration and optimized wavelet denoising[J]. Structural and Multidisciplinary Optimization, 2024, 67 (3): 28.
    [26] WANG L, LIU Y, LIU Y. An inverse method for distributed dynamic load identification of structures with interval uncertainties[J]. Advances in Engineering Software, 2019, 131: 77-89.
    [27] LIU J, HAN X, JIANG C, et al. Dynamic load identification for uncertain structures based on interval analysis and regularization method[J]. International Journal of Computational Methods, 2011, 8 (4): 667-683.
    [28] LIU J, SUN X, MENG X, et al. A novel shape function approach of dynamic load identification for the structures with interval uncertainty[J]. International Journal of Mechanics and Materials in Design, 2016, 12 (3): 375-386.
    [29] XU M, DU J, WANG C, et al. Hybrid uncertainty propagation in structural-acoustic systems based on the polynomial chaos expansion and dimension-wise analysis[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 320: 198-217.
    [30] 陈保家, 陈学力, 沈保明, 等. CNN-LSTM深度神经网络在滚动轴承故障诊断中的应用[J]. 西安交通大学学报, 2021, 55 (6): 28-36.

    CHEN Baojia, CHEN Xueli, SHEN Baoming, et al. An application of convolution neural network and long short-term memory in rolling bearing fault diagnosis[J]. Journal of Xi'an Jiaotong University, 2021, 55 (6): 28-36. (in Chinese)
    [31] 柏万宽. RNN神经网络在股票指数价格预测模型的研究与应用[D]. 重庆: 重庆大学, 2018.

    BAI Wankuan. Research and application of recurrent neural network in stock index forecasting model[D]. Chongqing: Chongqing University, 2018. (in Chinese)
    [32] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521 (7553): 436-444.
    [33] 齐传凯. 基于模型无关元学习的材料数据预测算法研究[D]. 沈阳: 辽宁大学, 2021.

    QI Chuankai. Research on material data prediction algorithm based on model-agnostic meta-learning[D]. Shenyang: Liaoning University, 2021. (in Chinese)
    [34] WANG L, XIONG C, WANG X, et al. A dimension-wise method and its improvement for multidisciplinary interval uncertainty analysis[J]. Applied Mathematical Modelling, 2018, 59: 680-695.
    [35] RUSSELL R D, SHAMPINE L F. A collocation method for boundary value problems[J]. Numerische Mathematik, 1972, 19 (1): 1-28.
    [36] MA X, HUANG C. Numerical solution of fractional integro-differential equations by a hybrid collocation method[J]. Applied Mathematics and Computation, 2013, 219 (12): 6750-6760.
    [37] ABRAMOWITZ M, STEGUN I A. Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables[M]. Washington: U S Government Printing Office, 1967.
    [38] WU J, LUO Z, ZHENG J, et al. Incremental modeling of a new high-order polynomial surrogate model[J]. Applied Mathematical Modelling, 2016, 40 (7/8): 4681-4699.
    [39] WU J, ZHANG Y, CHEN L, et al. A Chebyshev interval method for nonlinear dynamic systems under uncertainty[J]. Applied Mathematical Modelling, 2013, 37 (6): 4578-4591.
    [40] QIU Z, WANG X. Vertex solution theorem for the upper and lower bounds on the dynamic response of structures with uncertain-but-bounded parameters[J]. Acta Mechanica Sinica, 2009, 25 (3): 367-379.
  • 加载中
图(15) / 表(6)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  7
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-05-22
  • 修回日期:  2024-12-17
  • 刊出日期:  2025-08-01

目录

    /

    返回文章
    返回