留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚脲弹性体动态力学行为:实验表征、微观机制及本构建模

初东阳 姚凯丽 庄茁 柳占立

初东阳, 姚凯丽, 庄茁, 柳占立. 聚脲弹性体动态力学行为:实验表征、微观机制及本构建模[J]. 应用数学和力学, 2025, 46(9): 1083-1107. doi: 10.21656/1000-0887.450176
引用本文: 初东阳, 姚凯丽, 庄茁, 柳占立. 聚脲弹性体动态力学行为:实验表征、微观机制及本构建模[J]. 应用数学和力学, 2025, 46(9): 1083-1107. doi: 10.21656/1000-0887.450176
CHU Dongyang, YAO Kaili, ZHUANG Zhuo, LIU Zhanli. Dynamic Behaviors of Polyurea Elastomer: Experimental Characterization, Microscopic Mechanisms and Constitutive Modeling[J]. Applied Mathematics and Mechanics, 2025, 46(9): 1083-1107. doi: 10.21656/1000-0887.450176
Citation: CHU Dongyang, YAO Kaili, ZHUANG Zhuo, LIU Zhanli. Dynamic Behaviors of Polyurea Elastomer: Experimental Characterization, Microscopic Mechanisms and Constitutive Modeling[J]. Applied Mathematics and Mechanics, 2025, 46(9): 1083-1107. doi: 10.21656/1000-0887.450176

聚脲弹性体动态力学行为:实验表征、微观机制及本构建模

doi: 10.21656/1000-0887.450176
基金项目: 

国家自然科学基金(11972210);国家重点研发计划项目(2022YFC3320502)

详细信息
    作者简介:

    初东阳(1993—),男,高级工程师,博士(E-mail: cdyw@foxmail.com);柳占立(1981—),男,教授,博士,博士生导师(通讯作者. E-mail: liuzhanli@tsinghua.edu.cn).

    通讯作者:

    柳占立(1981—),男,教授,博士,博士生导师(通讯作者. E-mail: liuzhanli@tsinghua.edu.cn).

  • 中图分类号: O232

Dynamic Behaviors of Polyurea Elastomer: Experimental Characterization, Microscopic Mechanisms and Constitutive Modeling

Funds: 

The National Science Foundation of China(11972210)

  • 摘要: 聚脲弹性体在冲击防护领域有广阔的应用前景,然而,目前对于聚脲在高压冲击、层裂等情况下的变形失效物理机制仍不明晰,尚缺乏有效描述聚脲在多种应变率及应力状态下动态变形和失效的本构及损伤模型.针对这些挑战性问题,该文结合实验表征、分子动力学仿真以及宏观力学建模,对聚脲弹性体在不同应变率、冲击压力及应力状态下的变形失效行为进行了系统研究.通过建立聚脲全原子和两种粗粒化模型及微结构演化分析,揭示了聚脲在高应变率拉伸、高压冲击等载荷下的变形微观物理机制,以及高应力三轴度下的动态失效物理机制.建立了考虑强冲击下应变率温度压力耦合效应的聚脲弹性体本构模型,以及包括孔洞形核准则、流动法则的多种变形模式统一描述的宏观损伤模型.经验证,所建立的宏观力学模型能够正确描述聚脲在冲击载荷下的动态变形失效行为.该工作可为后续聚脲弹性体的优化设计及冲击防护应用提供指导.
  • BARSOUM R. History of high strain rate elastomeric polymers (HSREP) application[M]//BARSOUM R G.Elastomeric Polymers With High Rate Sensitivity.Amsterdam: Elsevier, 2015: 1-4.
    [2]ROLAND C M, FRAGIADAKIS D, GAMACHE R M. Elastomer-steel laminate armor[J].Composite Structures,2010,92(5): 1059-1064.
    [3]BOGOSLOVOV R B, ROLAND C M, GAMACHE R M. Impact-induced glass transition in elastomeric coatings[J].Applied Physics Letters,2007,90(22): 221910.
    [4]TEKALUR S A, SHUKLA A, SHIVAKUMAR K. Blast resistance of polyurea based layered composite materials[J].Composite Structures,2008,84(3): 271-281.
    [5]CHEN C, WANG X, HOU H, et al. Effect of strength matching on failure characteristics of polyurea coated thin metal plates under localized air blast loading: experiment and numerical analysis[J].Thin-Walled Structures,2020,154: 106819.
    [6]LI T, ZHANG C, XIE Z, et al. A multi-scale investigation on effects of hydrogen bonding on micro-structure and macro-properties in a polyurea[J].Polymer,2018,145: 261-271.
    [7]CASTAGNA A M, PANGON A, CHOI T, et al. The role of soft segment molecular weight on microphase separation and dynamics of bulk polymerized polyureas[J].Macromolecules,2012,45(20): 8438-8444.
    [8]IQBAL N, TRIPATHI M, PARTHASARATHY S, et al. Polyurea coatings for enhanced blast-mitigation: a review[J].RSC Advances,2016,6(111): 109706-109717.
    [9]AMIRKHIZI A V, ISAACS J, MCGEE J, et al. An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects[J]. Philosophical Magazine,2006,86(36): 5847-5866.
    [10]QIAO J, AMIRKHIZI A V, SCHAAF K, et al. Dynamic mechanical and ultrasonic properties of polyurea[J].Mechanics of Materials,2011,43(10): 598-607.
    [11]CHENG J, LIU Z L, LUO C C, et al. Revealing the high-frequency attenuation mechanism of polyurea-matrix composites[J].Acta Mechanica Sinica,2020,36(1): 130-142.
    [12]ROLAND C M, CASALINI R. Effect of hydrostatic pressure on the viscoelastic response of polyurea[J].Polymer,2007,48(19): 5747-5752.
    [13]CHOI T, FRAGIADAKIS D, ROLAND C M, et al. Microstructure and segmental dynamics of polyurea under uniaxial deformation[J].Macromolecules,2012,45(8): 3581-3589.
    [14]MOTT P H, GILLER C B, FRAGIADAKIS D, et al. Deformation of polyurea: where does the energy go?[J].Polymer,2016,105: 227-233.
    [15]RINALDI R G, BOYCE M C, WEIGAND S J, et al. Microstructure evolution during tensile loading histories of a polyurea[J].Journal of Polymer Science (Part B):Polymer Physics,2011,49(23): 1660-1671.
    [16]GONG C, CHEN Y, LI T, et al. Free volume based nonlinear viscoelastic model for polyurea over a wide range of strain rates and temperatures[J].Mechanics of Materials,2021,152: 103650.
    [17]GUO H, GUO W, AMIRKHIZI A V, et al. Experimental investigation and modeling of mechanical behaviors of polyurea over wide ranges of strain rates and temperatures[J].Polymer Testing,2016,53: 234-244.
    [18]MOTT P H, TWIGG J N, ROLAND D F, et al. High-speed tensile test instrument[J].Review of Scientific Instruments,2007,78(4): 045105.
    [19]YI J, BOYCE M C, LEE G F, et al. Large deformation rate-dependent stress-strain behavior of polyurea and polyurethanes[J].Polymer,2006,47(1): 319-329.
    [20]QI H J, BOYCE M C. Stress-strain behavior of thermoplastic polyurethanes[J].Mechanics of Materials,2005,37(8): 817-839.
    [21]CHO H, RINALDI R G, BOYCE M C. Constitutive modeling of the rate-dependent resilient and dissipative large deformation behavior of a segmented copolymer polyurea[J].Soft Matter,2013,9(27): 6319.
    [22]CLIFTON R J, JIAO T. Pressure and strain-rate sensitivity of an elastomer: (1) pressure-shear plate impact experiments; (2) constitutive modeling[M]//BARSOUM R G.Elastomeric Polymers With High Rate Sensitivity.Amsterdam: Elsevier, 2015: 17-65.
    [23]RANSOM T C, AHART M, HEMLEY R J, et al. Acoustic properties and density of polyurea at pressure up to 13.5 GPa through Brillouin scattering spectroscopy[J].Journal of Applied Physics,2018,123(19): 195102.
    [24]ZHU Y, LIECHTI K M, RAVI-CHANDAR K. Direct extraction of rate-dependent traction-separation laws for polyurea/steel interfaces[J].International Journal of Solids and Structures,2009,46(1): 31-51.
    [25]HEYDEN S, LI B, WEINBERG K, et al. A micromechanical damage and fracture model for polymers based on fractional strain-gradient elasticity[J].Journal of the Mechanics and Physics of Solids,2015,74: 175-195.
    [26]CUI Z, BRINSON L C. Thermomechanical properties and deformation of coarse-grained models of hard-soft block copolymers[J].Physical Review E,2013,88(2): 022602.
    [27]ZHU S, LEMPESIS N, IN ‘T VELD P J, et al. Molecular simulation of thermoplastic polyurethanes under large tensile deformation[J].Macromolecules,2018,51(5): 1850-1864.
    [28]ZHU S, LEMPESIS N, IN ‘T VELD P J, et al. Molecular simulation of thermoplastic polyurethanes under large compressive deformation[J].Macromolecules,2018,51(22): 9306-9316.
    [29]CHANTAWANSRI T L, SLIOZBERG Y R, ANDZELM J W, et al. Coarse-grained modeling of model poly(urethane urea)s: microstructure and interface aspects[J].Polymer,2012,53(20): 4512-4524.
    [30]GRUJICIC M, PANDURANGAN B, KING A E, et al. Multi-length scale modeling and analysis of microstructure evolution and mechanical properties in polyurea[J].Journal of Materials Science,2011,46(6): 1767-1779.
    [31]FUJIMOTO K, TANG Z, SHINODA W, et al. All-atom molecular dynamics study of impact fracture of glassy polymers Ⅰ: molecular mechanism of brittleness of PMMA and ductility of PC[J].Polymer,2019,178: 121570.
    [32]MAKKE A, PEREZ M, ROTTLER J, et al. Predictors of cavitation in glassy polymers under tensile strain: a coarse-grained molecular dynamics investigation[J].Macromolecular Theory and Simulations,2011,20(9): 826-836.
    [33]BALJON A R C, ROBBINS M O. Simulations of crazing in polymer glasses: effect of chain length and surface tension[J].Macromolecules,2001,34(12): 4200-4209.
    [34]MAHAJAN D K, SINGH B, BASU S. Void nucleation and disentanglement in glassy amorphous polymers[J].Physical Review E,2010,82: 011803.
    [35]BAI Y, LIU C, HUANG G, et al. A hyper-viscoelastic constitutive model for polyurea under uniaxial compressive loading[J].Polymers,2016,8(4): 133.
    [36]CHEVELLARD G, RAVI-CHANDAR K, LIECHTI K M. Modeling the nonlinear viscoelastic behavior of polyurea using a distortion modified free volume approach[J].Mechanics of Time-Dependent Materials,2012,16(2): 181-203.
    [37]GAMONPILAS C, MCCUISTON R. A non-linear viscoelastic material constitutive model for polyurea[J].Polymer,2012,53(17): 3655-3658.
    [38]SHIM J, MOHR D. Rate dependent finite strain constitutive model of polyurea[J].International Journal of Plasticity,2011,27(6): 868-886.
    [39]GRUJICIC M, HE T, PANDURANGAN B, et al. Experimental characterization and material-model development for microphase-segregated polyurea: an overview[J].Journal of Materials Engineering and Performance,2012,21(1): 2-16.
    [40]LI C, LUA J. A hyper-viscoelastic constitutive model for polyurea[J].Materials Letters,2019,63: 877-880.
    [41]FILONOVA V, LIU Y, FISH J. Singlescale and multiscale models of polyurea and high-density polyethylene (HDPE) subjected to high strain rates[M]//BARSOUM R G.Elastomeric Polymers With High Rate Sensitivity. Amsterdam: Elsevier, 2015: 233-256.
    [42]KEY C T, GORFAIN J E. A modified rate-dependent ballistic impact model for polyurea[M]//BARSOUM R G.Elastomeric Polymers With High Rate Sensitivity.Amsterdam: Elsevier, 2015: 304-318.
    [43]CLIFTON R J, WANG X, JIAO T. A physically-based, quasilinear viscoelasticity model for the dynamic response of polyurea[J].Journal of the Mechanics and Physics of Solids,2016,93: 8-15.
    [44]GURSON A L. Plastic Flow and fracture behavior of ductile materials incorporating void nucleaiion, growth and interaction[D]. Providence: Brown University, 1975.
    [45]TVERGAARD V, NEEDLEMAN A. Analysis of the cup-cone fracture in a round tensile bar[J].Acta Metallurgica,1984,32(1): 157-169.
    [46]ZARI F, NAT-ABDELAZIZ M, GLOAGUEN J M, et al. A physically-based constitutive model for anisotropic damage in rubber-toughened glassy polymers during finite deformation[J].International Journal of Plasticity,2011,27(1): 25-51.
    [47]CHALLIER M, BESSON J, LAIARINANDRASANA L, et al. Damage and fracture of polyvinylidene fluoride (PVDF) at 20 ℃: experiments and modelling[J].Engineering Fracture Mechanics,2006,73(1): 79-90.
    [48]GEARING B, ANAND L. On modeling the deformation and fracture response of glassy polymers due to shear-yielding and crazing[J].International Journal of Solids and Structures,2004,41(11/12): 3125-3150.
    [49]CHOWDHURY K A, BENZERGA A A, TALREJA R. An analysis of impact-induced deformation and fracture modes in amorphous glassy polymers[J].Engineering Fracture Mechanics,2008,75(11): 3328-3342.
    [50]MIEHE C, HOFACKER M, SCHNZEL L M, et al. Phase field modeling of fracture in multi-physics problems, part Ⅱ: Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids[J].Computer Methods in Applied Mechanics and Engineering,2015,294: 486-522.
    [51]NARAYAN S, ANAND L. Fracture of amorphous polymers: a gradient-damage theory[J].Journal of the Mechanics and Physics of Solids,2021,146: 104164.
    [52]FRANCIS D K, BOUVARD J L, HAMMI Y, et al. Formulation of a damage internal state variable model for amorphous glassy polymers[J].International Journal of Solids and Structures,2014,51(15/16): 2765-2776.
    [53]ZHAO J, KNAUSS W G, RAVICHANDRAN G. Applicability of the time-temperature superposition principle in modeling dynamic response of a polyurea[J].Mechanics of Time-Dependent Materials,2007,11(3): 289-308.
    [54]YAO K, LIU Z, LI T, et al. Mesoscale structure-based investigation of polyurea dynamic modulus and shock-wave dissipation[J].Polymer,2020,202: 122741.
    [55]AGRAWAL V, HOLZWORTH K, NANTASETPHONG W, et al. Prediction of viscoelastic properties with coarse-grained molecular dynamics and experimental validation for a benchmark polyurea system[J].Journal of Polymer Science (Part B):Polymer Physics, 2016,54(8): 797-810.
    [56]GRUJICIC M, SNIPES J S, RAMASWAMI S, et al. Coarse-grained molecular-level analysis of polyurea properties and shock-mitigation potential[J].Journal of Materials Engineering and Performance,2013.22(7): 1964-1981.
    [57]KRGER M. Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems[J].Computer Physics Communications,2005,168(3): 209-232.
    [58]LEE H S, YOO S R, SEO S W. Domain and segmental deformation behavior of thermoplastic elastomers using synchrotron SAXS and FTIR methods[J].Journal of Polymer Science (Part B):Polymer Physics,1999,37(22): 3233-3245.
    [59]YAO K, CHU D, LI T, et al. Atomic-scale simulation of hugoniot relations and energy dissipation of polyurea under high-speed shock[J].Engineering Computations,2021,38(3): 1209-1225.
    [60]YAO K, LIU Z, ZHUANG Z. Atomic insights into shock-induced spalling of polyurea by molecular dynamics simulation[J].Extreme Mechanics Letters,2022,55: 101805.
    [61]CHU D, LI Z, YAO K, et al. Studying the strengthening mechanism and thickness effect ofelastomer coating on the ballistic-resistance of the polyurea-coated steel plate[J].International Journal of Impact Engineering,2022,163: 104181.
    [62]CHU D, WANG Y, YANG S, et al. Analysis and design for the comprehensive ballistic and blast resistance of polyurea-coated steel plate[J].Defence Technology,2023,19: 35-51.
    [63]PORTER D.Group Interaction Modelling of Polymer Properties[M]. New York: Marcel Dekker, 1995.
    [64]JIAO T, CLIFTON R, GRUNSCHEL S. Pressure-sensitivity and tensile strength of an elastomer at high strain rates[C]//AIP Conference Proceedings,2007.
  • 加载中
计量
  • 文章访问数:  21
  • HTML全文浏览量:  5
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-17
  • 修回日期:  2025-07-25
  • 网络出版日期:  2025-10-17

目录

    /

    返回文章
    返回