| [1] |
DE ANDRADE B, VIANA A. Abstract Volterra integrodifferential equations with applications to parabolic models with memory[J]. Mathematische Annalen, 2017, 369 : 1131-1175. doi: 10.1007/s00208-016-1469-z
|
| [2] |
LI L, LIU J G, WANG L Z. Cauchy problems for Keller-Segel type time-space fractional diffusion equation[J]. Journal of Differential Equations, 2018, 265 (3): 1044-1096. doi: 10.1016/j.jde.2018.03.025
|
| [3] |
SUN Y F, ZENG Z, SONG J. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation[J]. Numerical Algebra, Control and Optimization, 2020, 10 (2): 157-164. doi: 10.3934/naco.2019045
|
| [4] |
METZLER R, KLAFTER J. The random walk's guide to anomalous diffusion: a fractional dynamics approach[J]. Physics Reports, 2000, 339 (1): 1-77. doi: 10.1016/S0370-1573(00)00070-3
|
| [5] |
崔建譞, 石成鑫, 柳冕, 等. 具有Robin边界条件的时间分数阶扩散方程的源项辨识问题研究[J]. 应用数学和力学, 2022, 43 (11): 1303-1312. doi: 10.21656/1000-0887.430004CUI Jianxuan, SHI Chengxin, LIU Mian, et al. Source identification for the time-fractional diffusion equation with robin boundary conditions[J]. Applied Mathematics and Mechanics, 2022, 43 (11): 1303-1312. (in Chinese) doi: 10.21656/1000-0887.430004
|
| [6] |
WU Di, LI Xiaolin. An element-free Galerkin method for time-fractional diffusion-wave equations[J]. Applied Mathematics and Mechanics, 2022, 43 (2): 215-223. (in Chinese)
|
| [7] |
袁小雨, 冯晓莉, 张云. 一种迭代正则化方法求解一类同时带有两个扰动数据的反向问题[J]. 应用数学和力学, 2023, 44 (10): 1260-1271. doi: 10.21656/1000-0887.440066YUAN Xiaoyu, FENG Xiaoli, ZHANG Yun. An iterative regularization method for solving backward problems with 2 perturbation data[J]. Applied Mathematics and Mechanics, 2023, 44 (10): 1260-1271. (in Chinese) doi: 10.21656/1000-0887.440066
|
| [8] |
ZENNIR K, MIYASITA T. Lifespan of solutions for a class of pseudo-parabolic equation with weak-memory[J]. Alexandria Engineering Journal, 2020, 59 (2): 957-964. doi: 10.1016/j.aej.2020.03.016
|
| [9] |
CAO Y, YIN J X, WANG C P. Cauchy problems of semilinear pseudo-parabolic equations[J]. Journal of Differential Equations, 2009, 246 (12): 4568-4590. doi: 10.1016/j.jde.2009.03.021
|
| [10] |
ZHOU J. Fujita exponent for an inhomogeneous pseudoparabolic equation[J]. Rocky Mountain Journal of Mathematics, 2020, 50 (3): 1125-1137.
|
| [11] |
BORIKHANOV M B, TOREBEK B T. Nonexistence of global solutions for an inhomogeneous pseudo-parabolic equation[J]. Applied Mathematics Letters, 2022, 134 : 108366. doi: 10.1016/j.aml.2022.108366
|
| [12] |
JIN L Y, LI L, FANG S M. The global existence and time-decay for the solutions of the fractional pseudo-parabolic equation[J]. Computers & Mathematics With Applications, 2017, 73 (10): 2221-2232.
|
| [13] |
ZHANG Q G, SUN H R. The blow-up and global existence of solutions of Cauchy problems for a time fractional diffusion equation[J]. Topological Methods in Nonlinear Analysis, 2015, 46 : 69-92. doi: 10.12775/TMNA.2015.038
|
| [14] |
TUAN N H, AU V V, XU R Z. Semilinear Caputo time-fractional pseudo-parabolic equations[J]. Communications on Pure and Applied Analysis, 2021, 20 (2): 583-621.
|
| [15] |
LI Y N, YANG Y T. Blow-up and global existence of solutions for time-space fractional pseudo-parabolic equation[J]. AIMS Mathematics, 2023, 8 (8): 17827-17859. doi: 10.3934/math.2023909
|
| [16] |
SAMKO S G, KILBAS A A, MARICHEY O I. Fractional Integrals and Derivatives: Theory and Applications[M]. Switzerland: Gordon and Breach Science Publishers, 1993.
|
| [17] |
SERRIN J, ZOU H. Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities[J]. Acta Mathematica, 2002, 189 : 79-142. doi: 10.1007/BF02392645
|