• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类时空分数阶伪抛物方程解的存在与爆破

陈业明 李亚宁

陈业明, 李亚宁. 一类时空分数阶伪抛物方程解的存在与爆破[J]. 应用数学和力学, 2025, 46(11): 1480-1490. doi: 10.21656/1000-0887.450217
引用本文: 陈业明, 李亚宁. 一类时空分数阶伪抛物方程解的存在与爆破[J]. 应用数学和力学, 2025, 46(11): 1480-1490. doi: 10.21656/1000-0887.450217
CHEN Yeming, LI Yaning. Existence and Blow-Up of Solutions to a Class of Time-Space Fractional Pseudo-Parabolic Equations[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1480-1490. doi: 10.21656/1000-0887.450217
Citation: CHEN Yeming, LI Yaning. Existence and Blow-Up of Solutions to a Class of Time-Space Fractional Pseudo-Parabolic Equations[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1480-1490. doi: 10.21656/1000-0887.450217

一类时空分数阶伪抛物方程解的存在与爆破

doi: 10.21656/1000-0887.450217
基金项目: 

国家自然科学基金 11801276

详细信息
    作者简介:

    陈业明(2000—),男,硕士(E-mail: 2082725007@qq.com)

    通讯作者:

    李亚宁(1985—),女,副教授(通讯作者. E-mail: liyaning@nuist.edu.cn)

  • 中图分类号: O357.41

Existence and Blow-Up of Solutions to a Class of Time-Space Fractional Pseudo-Parabolic Equations

  • 摘要: 研究了非齐次项对一类时空分数阶伪抛物方程解的存在与爆破的影响. 首先,用不动点定理得到适度解的局部存在性,再运用检验函数法得到,在一定条件下方程的解有限时间爆破;最后,证明存在合适的初值和非齐次项使得方程的解全局存在. 该结论拓展了整数阶伪抛物方程对应的结果,同时,与非齐次项为0时的时空分数阶伪抛物方程对应的结论不同,说明了非齐次项对解的爆破和全局存在有一定的影响.
  • [1] DE ANDRADE B, VIANA A. Abstract Volterra integrodifferential equations with applications to parabolic models with memory[J]. Mathematische Annalen, 2017, 369 : 1131-1175. doi: 10.1007/s00208-016-1469-z
    [2] LI L, LIU J G, WANG L Z. Cauchy problems for Keller-Segel type time-space fractional diffusion equation[J]. Journal of Differential Equations, 2018, 265 (3): 1044-1096. doi: 10.1016/j.jde.2018.03.025
    [3] SUN Y F, ZENG Z, SONG J. Quasilinear iterative method for the boundary value problem of nonlinear fractional differential equation[J]. Numerical Algebra, Control and Optimization, 2020, 10 (2): 157-164. doi: 10.3934/naco.2019045
    [4] METZLER R, KLAFTER J. The random walk's guide to anomalous diffusion: a fractional dynamics approach[J]. Physics Reports, 2000, 339 (1): 1-77. doi: 10.1016/S0370-1573(00)00070-3
    [5] 崔建譞, 石成鑫, 柳冕, 等. 具有Robin边界条件的时间分数阶扩散方程的源项辨识问题研究[J]. 应用数学和力学, 2022, 43 (11): 1303-1312. doi: 10.21656/1000-0887.430004

    CUI Jianxuan, SHI Chengxin, LIU Mian, et al. Source identification for the time-fractional diffusion equation with robin boundary conditions[J]. Applied Mathematics and Mechanics, 2022, 43 (11): 1303-1312. (in Chinese) doi: 10.21656/1000-0887.430004
    [6] WU Di, LI Xiaolin. An element-free Galerkin method for time-fractional diffusion-wave equations[J]. Applied Mathematics and Mechanics, 2022, 43 (2): 215-223. (in Chinese)
    [7] 袁小雨, 冯晓莉, 张云. 一种迭代正则化方法求解一类同时带有两个扰动数据的反向问题[J]. 应用数学和力学, 2023, 44 (10): 1260-1271. doi: 10.21656/1000-0887.440066

    YUAN Xiaoyu, FENG Xiaoli, ZHANG Yun. An iterative regularization method for solving backward problems with 2 perturbation data[J]. Applied Mathematics and Mechanics, 2023, 44 (10): 1260-1271. (in Chinese) doi: 10.21656/1000-0887.440066
    [8] ZENNIR K, MIYASITA T. Lifespan of solutions for a class of pseudo-parabolic equation with weak-memory[J]. Alexandria Engineering Journal, 2020, 59 (2): 957-964. doi: 10.1016/j.aej.2020.03.016
    [9] CAO Y, YIN J X, WANG C P. Cauchy problems of semilinear pseudo-parabolic equations[J]. Journal of Differential Equations, 2009, 246 (12): 4568-4590. doi: 10.1016/j.jde.2009.03.021
    [10] ZHOU J. Fujita exponent for an inhomogeneous pseudoparabolic equation[J]. Rocky Mountain Journal of Mathematics, 2020, 50 (3): 1125-1137.
    [11] BORIKHANOV M B, TOREBEK B T. Nonexistence of global solutions for an inhomogeneous pseudo-parabolic equation[J]. Applied Mathematics Letters, 2022, 134 : 108366. doi: 10.1016/j.aml.2022.108366
    [12] JIN L Y, LI L, FANG S M. The global existence and time-decay for the solutions of the fractional pseudo-parabolic equation[J]. Computers & Mathematics With Applications, 2017, 73 (10): 2221-2232.
    [13] ZHANG Q G, SUN H R. The blow-up and global existence of solutions of Cauchy problems for a time fractional diffusion equation[J]. Topological Methods in Nonlinear Analysis, 2015, 46 : 69-92. doi: 10.12775/TMNA.2015.038
    [14] TUAN N H, AU V V, XU R Z. Semilinear Caputo time-fractional pseudo-parabolic equations[J]. Communications on Pure and Applied Analysis, 2021, 20 (2): 583-621.
    [15] LI Y N, YANG Y T. Blow-up and global existence of solutions for time-space fractional pseudo-parabolic equation[J]. AIMS Mathematics, 2023, 8 (8): 17827-17859. doi: 10.3934/math.2023909
    [16] SAMKO S G, KILBAS A A, MARICHEY O I. Fractional Integrals and Derivatives: Theory and Applications[M]. Switzerland: Gordon and Breach Science Publishers, 1993.
    [17] SERRIN J, ZOU H. Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities[J]. Acta Mathematica, 2002, 189 : 79-142. doi: 10.1007/BF02392645
  • 加载中
计量
  • 文章访问数:  67
  • HTML全文浏览量:  21
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-17
  • 修回日期:  2024-10-10
  • 刊出日期:  2025-11-01

目录

    /

    返回文章
    返回