| [1] |
雷志栋. 土壤水动力学[M]. 北京: 清华大学出版社, 1988.LEI Zhidong. Soil Hydrodynamics[M]. Beijing: Tsinghua University Press, 1988. (in Chinese)
|
| [2] |
李焕荣, 罗振东. 非粘性土壤中溶质运移问题的守恒混合有限元法及其数值模拟[J]. 计算数学, 2010, 32(2): 183-194.LI Huanrong, LUO Zhendong. Conservation mixed finite element methods and simulations for the solute moving problems in the nonstick soil water[J]. Mathematica Numerica Sinica, 2010, 32(2): 183-194. (in Chinese)
|
| [3] |
LUO Z D, LI H, ZHOU Y J, et al. A reduced finite element formulation based on POD method for two-dimensional solute transport problems[J]. Journal of Mathematical Analysis and Applications, 2012, 385(1): 371-383. doi: 10.1016/j.jmaa.2011.06.051
|
| [4] |
LUO Z D. Finite Element and Reduced Dimension Methods for Partial Differential Equations[M]. Beijing: Springer and Science Press of China, 2024.
|
| [5] |
TENG F, LUO Z D. A natural boundary element reduced-dimension model for uniform high-voltage transmission line problem in an unbounded outer domain[J]. Computational and Applied Mathematics, 2024, 43(3): 106. doi: 10.1007/s40314-024-02617-6
|
| [6] |
LI H, SONG Z. A reduced-order energy-stability-preserving finite difference iterative scheme based on POD for the Allen-Cahn equation[J]. Journal of Mathematical Analysis and Applications, 2020, 491(1): 124245. doi: 10.1016/j.jmaa.2020.124245
|
| [7] |
LI K, HUANG T Z, LI L, et al. A reduced-order discontinuous Galerkin method based on POD for electromagnetic simulation[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(1): 242-254. doi: 10.1109/TAP.2017.2768562
|
| [8] |
SELTEN F M. Baroclinic empirical orthogonal functions as basis functions in an atmospheric model[J]. Journal of the Atmospheric Sciences, 1997, 54(16): 2099-2114. doi: 10.1175/1520-0469(1997)054<2099:BEOFAB>2.0.CO;2
|
| [9] |
LI K, HUANG T Z, LI L, et al. A reduced-order discontinuous Galerkin method based on a Krylov subspace technique in nanophotonics[J]. Applied Mathematics and Computation, 2019, 358: 128-145. doi: 10.1016/j.amc.2019.04.031
|
| [10] |
LUO Z D, CHEN G. Proper Orthogonal Decomposition Methods for Partial Differential Equations[M]. London: Academic Press of Elsevier, 2019.
|
| [11] |
LUO Z D, LI H, SHANG Y, et al. A reduced-order LSMFE formulation based on POD method and implementation of algorithm for parabolic equations[J]. Finite Elements in Analysis and Design, 2012, 60: 1-12. doi: 10.1016/j.finel.2012.05.002
|
| [12] |
LUO Z D, DU J, XIE Z, et al. A reduced stabilized mixed finite element formulation based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations[J]. International Journal for Numerical Methods in Engineering, 2011, 88(1): 31-46. doi: 10.1002/nme.3161
|
| [13] |
LUO Z D, ZHOU Y, YANG X. A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation[J]. Applied Numerical Mathematics, 2009, 59(8): 1933-1946. doi: 10.1016/j.apnum.2008.12.034
|
| [14] |
张恭庆, 林源渠. 泛函分析讲义[M]. 北京: 北京大学出版社, 2011.ZHANG Gongqing, LIN Yuanqu. Notes on Functional Analysis[M]. Beijing: Peking University Press, 2011. (in Chinese)
|
| [15] |
CIARLET P G. The Finite Element Method for Elliptic Problems[M]. Philadelphia: Society for Industrial and Applied Mathematic, 2002.
|