• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

土壤水流中溶质输运的CN有限元解系数向量的降维方法

侯晓丽 罗振东 符辉

侯晓丽, 罗振东, 符辉. 土壤水流中溶质输运的CN有限元解系数向量的降维方法[J]. 应用数学和力学, 2025, 46(11): 1452-1463. doi: 10.21656/1000-0887.450226
引用本文: 侯晓丽, 罗振东, 符辉. 土壤水流中溶质输运的CN有限元解系数向量的降维方法[J]. 应用数学和力学, 2025, 46(11): 1452-1463. doi: 10.21656/1000-0887.450226
HOU Xiaoli, LUO Zhendong, FU Hui. A Reduced-Dimension Method of CN Finite Element Solution Coefficient Vectors for Solute Transport in Soil Flow[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1452-1463. doi: 10.21656/1000-0887.450226
Citation: HOU Xiaoli, LUO Zhendong, FU Hui. A Reduced-Dimension Method of CN Finite Element Solution Coefficient Vectors for Solute Transport in Soil Flow[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1452-1463. doi: 10.21656/1000-0887.450226

土壤水流中溶质输运的CN有限元解系数向量的降维方法

doi: 10.21656/1000-0887.450226
基金项目: 

国家自然科学基金 11671106

详细信息
    作者简介:

    侯晓丽(1990—), 女, 讲师, 博士生(E-mail: 50901655@ncepu.edu.cn)

    通讯作者:

    罗振东(1958—), 男, 教授, 博士, 博士生导师(通讯作者. E-mail: zhdluo@ncepu.edu.cn)

  • 中图分类号: O242.21

A Reduced-Dimension Method of CN Finite Element Solution Coefficient Vectors for Solute Transport in Soil Flow

  • 摘要: 利用特征投影分解(proper orthogonal decomposition, POD)方法建立土壤水流中溶质输运的一种很少未知量和精度足够高的Crank-Nicolson(CN)有限元解系数向量的降维外推仿真模型, 并分析这种降维外推仿真模型解的存在性和稳定性及误差. 用数值实验检验该模型的有效性和理论结果的正确性.
  • 图  1  t=4时,CN有限元降维解的后视图(左图)和经典CN有限元解的后视图(右图)

    Figure  1.  The rear view of the CN finite element reduced-dimension solution at t=4 (left) and the rear view of the classical CN finite element solution at t=4 (right)

    图  2  t=8时,CN有限元降维解的后视图(左图)和经典CN有限元解的后视图(右图)

    Figure  2.  The rear view of the CN finite element reduced-dimension solution at t=8 (left) and the rear view of the classical CN finite element solution at t=8 (right)

    图  3  t=4时,CN有限元降维解的前视图(左图)和经典CN有限元解的前视图(右图)

    Figure  3.  The front view of the CN finite element reduced-dimension solution at t=4 (left) and the front view of the classical CN finite element solution at t=4 (right)

    图  4  t=8时,CN有限元降维解的前视图(左图)和经典CN有限元解的前视图(右图)

    Figure  4.  The front view of the CN finite element reduced-dimension solution at t=8 (left) and the front view of the classical CN finite element solution at t=8 (right)

    图  5  t=8 s时, 具有不同POD数目的CN有限元降维解的误差

    Figure  5.  For t=8 s, the errors of CN finite element reduced-dimension solutions with different POD numbers

  • [1] 雷志栋. 土壤水动力学[M]. 北京: 清华大学出版社, 1988.

    LEI Zhidong. Soil Hydrodynamics[M]. Beijing: Tsinghua University Press, 1988. (in Chinese)
    [2] 李焕荣, 罗振东. 非粘性土壤中溶质运移问题的守恒混合有限元法及其数值模拟[J]. 计算数学, 2010, 32(2): 183-194.

    LI Huanrong, LUO Zhendong. Conservation mixed finite element methods and simulations for the solute moving problems in the nonstick soil water[J]. Mathematica Numerica Sinica, 2010, 32(2): 183-194. (in Chinese)
    [3] LUO Z D, LI H, ZHOU Y J, et al. A reduced finite element formulation based on POD method for two-dimensional solute transport problems[J]. Journal of Mathematical Analysis and Applications, 2012, 385(1): 371-383. doi: 10.1016/j.jmaa.2011.06.051
    [4] LUO Z D. Finite Element and Reduced Dimension Methods for Partial Differential Equations[M]. Beijing: Springer and Science Press of China, 2024.
    [5] TENG F, LUO Z D. A natural boundary element reduced-dimension model for uniform high-voltage transmission line problem in an unbounded outer domain[J]. Computational and Applied Mathematics, 2024, 43(3): 106. doi: 10.1007/s40314-024-02617-6
    [6] LI H, SONG Z. A reduced-order energy-stability-preserving finite difference iterative scheme based on POD for the Allen-Cahn equation[J]. Journal of Mathematical Analysis and Applications, 2020, 491(1): 124245. doi: 10.1016/j.jmaa.2020.124245
    [7] LI K, HUANG T Z, LI L, et al. A reduced-order discontinuous Galerkin method based on POD for electromagnetic simulation[J]. IEEE Transactions on Antennas and Propagation, 2018, 66(1): 242-254. doi: 10.1109/TAP.2017.2768562
    [8] SELTEN F M. Baroclinic empirical orthogonal functions as basis functions in an atmospheric model[J]. Journal of the Atmospheric Sciences, 1997, 54(16): 2099-2114. doi: 10.1175/1520-0469(1997)054<2099:BEOFAB>2.0.CO;2
    [9] LI K, HUANG T Z, LI L, et al. A reduced-order discontinuous Galerkin method based on a Krylov subspace technique in nanophotonics[J]. Applied Mathematics and Computation, 2019, 358: 128-145. doi: 10.1016/j.amc.2019.04.031
    [10] LUO Z D, CHEN G. Proper Orthogonal Decomposition Methods for Partial Differential Equations[M]. London: Academic Press of Elsevier, 2019.
    [11] LUO Z D, LI H, SHANG Y, et al. A reduced-order LSMFE formulation based on POD method and implementation of algorithm for parabolic equations[J]. Finite Elements in Analysis and Design, 2012, 60: 1-12. doi: 10.1016/j.finel.2012.05.002
    [12] LUO Z D, DU J, XIE Z, et al. A reduced stabilized mixed finite element formulation based on proper orthogonal decomposition for the non-stationary Navier-Stokes equations[J]. International Journal for Numerical Methods in Engineering, 2011, 88(1): 31-46. doi: 10.1002/nme.3161
    [13] LUO Z D, ZHOU Y, YANG X. A reduced finite element formulation based on proper orthogonal decomposition for Burgers equation[J]. Applied Numerical Mathematics, 2009, 59(8): 1933-1946. doi: 10.1016/j.apnum.2008.12.034
    [14] 张恭庆, 林源渠. 泛函分析讲义[M]. 北京: 北京大学出版社, 2011.

    ZHANG Gongqing, LIN Yuanqu. Notes on Functional Analysis[M]. Beijing: Peking University Press, 2011. (in Chinese)
    [15] CIARLET P G. The Finite Element Method for Elliptic Problems[M]. Philadelphia: Society for Industrial and Applied Mathematic, 2002.
  • 加载中
图(5)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  20
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-06
  • 刊出日期:  2025-11-01

目录

    /

    返回文章
    返回