• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

阻尼eKdV-Burgers方程的共形广义多辛Fourier拟谱算法

李骞 王桂霞 王一辰

李骞, 王桂霞, 王一辰. 阻尼eKdV-Burgers方程的共形广义多辛Fourier拟谱算法[J]. 应用数学和力学, 2025, 46(11): 1464-1479. doi: 10.21656/1000-0887.450263
引用本文: 李骞, 王桂霞, 王一辰. 阻尼eKdV-Burgers方程的共形广义多辛Fourier拟谱算法[J]. 应用数学和力学, 2025, 46(11): 1464-1479. doi: 10.21656/1000-0887.450263
LI Qian, WANG Guixia, WANG Yichen. A Conformal Generalized Multi-Symplectic Fourier Pseudo-Spectral Algorithm for Damping eKdV-Burgers Equations[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1464-1479. doi: 10.21656/1000-0887.450263
Citation: LI Qian, WANG Guixia, WANG Yichen. A Conformal Generalized Multi-Symplectic Fourier Pseudo-Spectral Algorithm for Damping eKdV-Burgers Equations[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1464-1479. doi: 10.21656/1000-0887.450263

阻尼eKdV-Burgers方程的共形广义多辛Fourier拟谱算法

doi: 10.21656/1000-0887.450263
基金项目: 

国家自然科学基金 62161045

内蒙古自治区自然科学基金重点项目 2022ZD05

内蒙古自治区自然科学基金 2023LHMS01007

内蒙古自治区自然科学基金 2022JBQN074

详细信息
    作者简介:

    李骞(2000—), 女, 硕士生(E-mail: 3491240780@qq.com)

    通讯作者:

    王桂霞(1968—), 女, 教授, 博士(通讯作者. E-mail: nsdwgx@126.com)

  • 中图分类号: O241.82

A Conformal Generalized Multi-Symplectic Fourier Pseudo-Spectral Algorithm for Damping eKdV-Burgers Equations

  • 摘要: 基于Hamilton共形广义多辛理论, 研究一类阻尼eKdV-Burgers方程的共形广义多辛Fourier拟谱格式的保结构算法. 首先, 通过引入中间变量, 将方程转化为满足局部守恒的共形广义多辛Hamilton系统, 并利用Strang分裂方法, 将其分裂为守恒子系统和耗散子系统. 进一步, 空间上利用Fourier拟谱方法, 时间上利用隐中点方法, 对该系统进行离散,得到共形广义多辛Fourier拟谱格式, 在周期边界条件下, 该格式满足全局共形质量守恒律和动量守恒律. 数值实例表明该算法是有效的, 能够保持系统质量和动量衰减特性.
  • 图  1  单孤立波的演化过程(算例1)

    Figure  1.  The evolution of a single solitary wave (case 1)

    图  2  不同时刻的波形图(算例1)

    Figure  2.  Waveform plots at different moments (case 1)

    图  3  全局共形质量随时间的变化(算例1)

    Figure  3.  The global conformal change mass over time (case 1)

    图  4  质量衰减速度误差(算例1)

    Figure  4.  The mass decay rate error (case 1)

    图  5  广义多辛误差(算例1)

    Figure  5.  Generalized multi-symplectic errors (case 1)

    图  6  局部能量误差(算例1)

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  6.  Local energy errors (case 1)

    图  7  两种差分方法质量衰减速度r的误差对比

    Figure  7.  Comparison of the errors of mass decay rate r of the 2 difference methods

    图  8  τ=10-4时的空间谱收敛精度测试

    Figure  8.  The spatial spectral convergence accuracy test at τ=10-4

    图  9  单孤立波的演化过程(算例2)

    Figure  9.  The evolution of the single solitary wave (case 2)

    图  10  质量衰减速度的误差(算例2)

    Figure  10.  The error of the mass decay rate (case 2)

    图  11  局部能量误差(算例2)

    Figure  11.  Local energy errors (case 2)

    图  12  广义多辛误差(算例2)

    Figure  12.  Generalized multi-symplectic errors (case 2)

    图  13  非线性项的影响

    Figure  13.  The effects of nonlinear terms

    图  14  高阶非线性项的影响

    Figure  14.  The effects of higher-order nonlinear terms

    图  15  频散项的影响

    Figure  15.  The effects of the dispersion terms

    图  16  整体演化图

    Figure  16.  Overall evolution curves

    图  17  单孤立波的演化过程1

    Figure  17.  Evolution 1 of the single solitary wave

    图  18  不同时刻的波形图1

    Figure  18.  Waveform plots 1 at different moments

    图  19  单孤立波的演化过程2

    Figure  19.  The evolution 2 of the single solitary wave

    图  20  不同时刻的波形图2

    Figure  20.  Waveform plots 2 at different moments

    图  21  双孤立波的演化过程(算例3)

    Figure  21.  The evolution of double solitary waves (case 3)

    图  22  不同时刻的波形(算例3)

    Figure  22.  Wave forms of different moments (case 3)

    图  23  全局共形质量随时间变化(算例3)

    Figure  23.  Global conformal mass changes over time (case 3)

    图  24  质量衰减速度的误差(算例3)

    Figure  24.  The mass decay rate error (case 3)

    图  25  广义多辛误差图(算例3)

    Figure  25.  Generalized multi-symplectic errors (case 3)

    图  26  局部能量误差图(算例3)

    Figure  26.  Local energy errors (case 3)

    图  27  双孤立波的演化过程

    Figure  27.  The evolution of double solitary waves

    图  28  不同时刻波形对比

    Figure  28.  Comparison of waveforms at different moments

    图  29  双孤立波不同时刻(t=0, t=4.5)

    Figure  29.  The double solitary waves of different moments (t=0, t=4.5)

    图  30  双孤立波不同时刻(t=4.7, t=10)

    Figure  30.  The double solitary waves of different moments (t=4.7, t=10)

    表  1  取不同时间步长的误差和误差阶

    Table  1.   Errors and error orders at different time steps

    h τ error error order
    1/4 1/16 3×10-3 -
    1/4 1/32 7.18×10-4 1.958
    1/4 1/64 1.93×10-4 1.895
    1/4 1/128 4.85×10-5 1.994
    下载: 导出CSV
  • [1] 冯康, 秦孟兆. 哈密尔顿系统的辛几何算法[M]. 杭州: 浙江科学技术出版社, 2003.

    FENG Kang, QIN Mengzhao. Symplectic Geometric Algorithms for Hamiltonian Systems[M]. Hangzhou: Zhejiang Science and Technology Publishing House, 2003. (in Chinese)
    [2] 秦孟兆, 王雨顺. 偏微分方程中的保结构算法[M]. 杭州: 浙江科学技术出版社, 2011.

    QIN Mengzhao, WANG Yushun. Structure-Preserving Algorithm for Partial Differential Equation[M]. Hangzhou: Zhejiang Science and Technology Publishing House, 2011. (in Chinese)
    [3] HAIRER E, LUBICH C, WANNER G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations[M]. 2nd ed. Berlin Heidlberg: Springer, 2006.
    [4] MCLACHLAN R I, QUISPEL G R W. Splittingmethods[J]. Acta Numerica, 2002, 11 : 341-434. doi: 10.1017/S0962492902000053
    [5] 王雨顺, 秦孟兆. 变分与无限维系统的高精度辛格式[J]. 计算数学, 2002, 24 (4): 431-436.

    WANG Yushun, QIN Mengzhao. Variation and high order accuracy symplectic scheme for infinite dimensional system[J]. Mathematica Numerica Sinica, 2002, 24 (4): 431-436. (in Chinese)
    [6] TANG Y F, VÁZQUEZ L, ZHANG F, et al. Symplectic methods for the nonlinear Schrödinger equation[J]. Computers & Mathematics With Applications, 1996, 32 (5): 73-83.
    [7] SHANG Z J. KAM theorem of symplectic algorithms for Hamiltoniansystems[J]. Numerische Mathematik, 1999, 83 (3): 477-496. doi: 10.1007/s002110050460
    [8] BRIDGES T J, REICH S. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conservesymplecticity[J]. Physics Letters A, 2001, 284 (4/5): 184-193.
    [9] BRIDGES T J. Multi-symplectic structures and wavepropagation[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1997, 121 (1): 147-190. doi: 10.1017/S0305004196001429
    [10] MARSDEN J E, PATRICK G W, SHKOLLER S. Multisymplectic geometry, variational integrators, and nonlinear PDEs[J]. Communications in Mathematical Physics, 1998, 199 (2): 351-395. doi: 10.1007/s002200050505
    [11] MARSDEN J E, PEKARSKY S, SHKOLLER S, et al. Variational methods, multisymplectic geometry and continuum mechanics[J]. Journal of Geometry and Physics, 2001, 38 (3/4): 253-284.
    [12] 王雨顺, 王斌, 秦孟兆. 2+1维sine-Gordon方程多辛格式的复合构造[J]. 中国科学(A辑), 2003, 33 (3): 272-281.

    WANG Yushun, WANG Bin, QIN Mengzhao. Composite construction of multi-symplectic scheme for 2+1 dimensional sine-Gordon equation[J]. Science in China (Serises A), 2003, 33 (3): 272-281. (in Chinese)
    [13] 王雨顺, 王斌, 季仲贞. 孤立波方程的保结构算法[J]. 计算物理, 2004, 21 (5): 386-400.

    WANG Yushun, WANG Bin, JI Zhongzhen. Structure preserving algorithms for soliton equations[J]. Chinese Journal of Computation Physics, 2004, 21 (5): 386-400. (in Chinese)
    [14] 王雨顺, 王斌, 秦孟兆. 偏微分方程的局部保结构算法[J]. 中国科学(A辑): 数学, 2008, 38 (4): 377-397.

    WANG Yushun, WANG Bin, QIN Mengzhao. Local structure-preserving algorithm for partial differential equations[J]. Science in China (Series A): Mathematics, 2008, 38 (4): 377-397. (in Chinese)
    [15] SUN Y J, QIN M Z. A multi-symplectic scheme for RLW equation[J]. Journal of Computational Mathematics, 2004, 22 (4): 611-621.
    [16] 胡伟鹏, 邓子辰. 无限维动力学系统的保结构分析方法[M]. 西安: 西北工业大学出版社, 2015.

    HU Weipeng, DENG Zichen. Structure-Preserving Analysis Method for Infinite Dimensional Dynamic Systems[M]. Xi'an: Northwestern Polytechnical University Press, 2015. (in Chinese)
    [17] 胡伟鹏, 邓子辰, 李文成. KdV方程的多辛算法及其孤子解的数值模拟[J]. 西北工业大学学报, 2008, 26 (1): 128-131.

    HU Weipeng, DENG Zichen, LI Wencheng. Multi-symplectic algorithm and simulation of soliton for KdV equation[J]. Journal of Northwestern Polytechnical University, 2008, 26 (1): 128-131. (in Chinese)
    [18] 何啸, 贾村, 孟静, 等. 内孤立波过陆架陆坡地形的数值模拟研究[J]. 海洋科学, 2023, 47 (3): 1-14.

    HE Xiao, JIA Cun, MENG Jing, et al. Numerical investigation of the evolution of internal solitary waves over shelf-slope topography[J]. Marine Sciences, 2023, 47 (3): 1-14. (in Chinese)
    [19] 郭峰, 吴凤珍. MKdV方程的多辛格式[J]. 河南师范大学学报(自然科学版), 2005, 33 (1): 128-129.

    GUO Feng, WU Fengzhen. Multi-symplectic scheme for MKdV equation[J]. Journal of Henan Normal University (Natural Science Edition), 2005, 33 (1): 128-129. (in Chinese)
    [20] 胡伟鹏, 邓子辰, 李文成. 广义KdV-mKdV方程的多辛算法及孤波解数值模拟[J]. 西北工业大学学报, 2008, 26 (4): 450-453.

    HU Weipeng, DENG Zichen, LI Wencheng. Multi-symplectic scheme and simulation of solitary wave solution for generalized KdV-mKdV equation[J]. Journal of Northwestern Polytechnical University, 2008, 26 (4): 450-453. (in Chinese)
    [21] 王晨逦, 王桂霞, 萨和雅. EKdV方程的高阶多辛保结构算法及孤立波解的数值模拟[J]. 内蒙古师范大学学报(自然科学汉文版), 2023, 52 (2): 119-126.

    WANG Chenli, WANG Guixia, SA Heya. High order multisymplectic structure-preserving algorithm and numerical simulation of solitary wave solutions for EKdV equation[J]. Journal of Inner Mongolia Normal University (Natural Science Edition), 2023, 52 (2): 119-126. (in Chinese)
    [22] HELFRICH K R, MELVILLE W K. On long nonlinear internal waves over slope-shelf topography[J]. Journal of Fluid Mechanics, 1986, 167 : 285. doi: 10.1017/S0022112086002823
    [23] MCLACHLAN R, PERLMUTTER M. Conformal Hamiltonian systems[J]. Journal of Geometry and Physics, 2001, 39 (4): 276-300. doi: 10.1016/S0393-0440(01)00020-1
    [24] BHATT A, FLOYD D, MOORE B E. Second order conformal symplectic schemes for damped Hamiltonian systems[J]. Journal of Scientific Computing, 2016, 66 (3): 1234-1259. doi: 10.1007/s10915-015-0062-z
    [25] MOORE B E. Conformal multi-symplectic integration methods for forced-damped semi-linear wave equations[J]. Mathematics and Computers in Simulation, 2009, 80 (1): 20-28. doi: 10.1016/j.matcom.2009.06.024
    [26] MOORE B E, NOREÑA L, SCHOBER C M. Conformal conservation laws and geometric integration for damped Hamiltonian PDEs[J]. Journal of Computational Physics, 2013, 232 (1): 214-233. doi: 10.1016/j.jcp.2012.08.010
    [27] MOORE B E. Multi-conformal-symplectic PDEs and discretizations[J]. Journal of Computational and Applied Mathematics, 2017, 323 : 1-15. doi: 10.1016/j.cam.2017.04.008
    [28] 汪佳玲. 几个偏微分方程的保结构算法构造及误差分析[D]. 南京: 南京师范大学, 2017.

    WANG Jialing. Construction and analysis of the structure-preserving algorithms for the Hamiltonian partial differential equations[D]. Nanjing: Nanjing Normal University, 2017. (in Chinese)
    [29] 郑家栋, 张汝芬, 郭本瑜. SRLW方程的Fourier拟谱方法[J]. 应用数学和力学, 1989, 10 (9): 801-810.

    ZHENG Jiadong, ZHANG Rufen, GUO Benyu. The Fourier pseudo-spectral method for the SRLW equation[J]. Applied Mathematics and Mechanics, 1989, 10 (9): 801-810. (in Chinese)
    [30] 邓镇国, 马和平. 广义KdV方程Fourier谱逼近的最优误差估计[J]. 应用数学和力学, 2009, 30 (1): 30-39.

    DENG Zhenguo, MA Heping. Optimal error estimates for Fourier spectral approxiation of the generalized KdV equation[J]. Applied Mathematics and Mechanics, 2009, 30 (1): 30-39. (in Chinese)
    [31] HU D D, CAI W J, XU Z Z, et al. Dissipation-preserving Fourier pseudo-spectral method for the space fractional nonlinear sine-Gordon equation with damping[J]. Mathematics and Computers in Simulation, 2021, 188 : 35-59. doi: 10.1016/j.matcom.2021.03.034
    [32] HE Y, ZHAO X F. Numerical methods for some nonlinear Schrödinger equations in soliton management[J]. Journal of Scientific Computing, 2023, 95 (2): 61. doi: 10.1007/s10915-023-02181-x
    [33] 许壮志. 空间分数阶非线性Schrödinger方程保结构算法[D]. 南京: 南京师范大学, 2021.

    XU Zhuangzhi. Structure-preserving algorithms for the space fractional nonlinear Schrödinger equation[D]. Nanjing: Nanjing Normal University, 2021. (in Chinese)
    [34] 蔡树群. 内孤立波数值模式及其在南海区域的应用[M]. 北京: 海洋出版社, 2015.

    CAI Shuqun. Numerical Model of Internal Solitary Waves and Its Application in South China Sea Region[M]. Beijing: Ocean Press, 2015. (in Chinese)
    [35] 方欣华, 杜涛. 海洋内波基础和中国海内波[M]. 青岛: 中国海洋大学出版社, 2005.

    FANG Xinhua, DU Tao. Fundamentals of Oceanic Internal Waves and Internal Waves in the China Seas[M]. Qingdao: China Ocean University Press, 2005. (in Chinese)
    [36] 张善武. 基于变系数KdV-type理论模型的南海北部内孤立波传播演变过程研究[D]. 青岛: 中国海洋大学, 2014.

    ZHANG Shanwu. Investigation of the propagation and evolution processes of internal solitary waves in the Northern South China Sea based on the variable-coefficients KdV-type theoretical models[D]. Qingdao: Ocean University of China, 2014. (in Chinese)
    [37] 傅浩. 共形Hamilton系统的若干保结构算法研究[D]. 长沙: 国防科技大学, 2018.

    FU Hao. Some structure-preserving algorithms for conformal Hamiltonian system[D]. Changsha: National University of Defense Technology, 2018. (in Chinese)
    [38] 宋松和, 陈亚铭, 朱华君. KdV方程的多辛Fourier拟谱格式及其孤立波解的数值模拟[J]. 安徽大学学报(自然科学版), 2010, 34 (4): 1-7.

    SONG Songhe, CHEN Yaming, ZHU Huajun. Multi-symplectic Fourier pseudospectral scheme and simulation of soliton solutions for the KdV equation[J]. Journal of Anhui University (Natural Sciences Edition), 2010, 34 (4): 1-7. (in Chinese)
    [39] 向新民. 谱方法的数值分析[M]. 北京: 科学出版社, 2000.

    XIANG Xinmin. Numerical Analysis of Spectral Method[M]. Beijing: Science Press, 2000. (in Chinese)
  • 加载中
图(30) / 表(1)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  16
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-29
  • 修回日期:  2024-12-24
  • 刊出日期:  2025-11-01

目录

    /

    返回文章
    返回