• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于绝对节点坐标法的高阶薄壁曲梁单元

吴明港 王玉凤 马喆 沈振兴

吴明港, 王玉凤, 马喆, 沈振兴. 基于绝对节点坐标法的高阶薄壁曲梁单元[J]. 应用数学和力学, 2025, 46(11): 1394-1402. doi: 10.21656/1000-0887.450296
引用本文: 吴明港, 王玉凤, 马喆, 沈振兴. 基于绝对节点坐标法的高阶薄壁曲梁单元[J]. 应用数学和力学, 2025, 46(11): 1394-1402. doi: 10.21656/1000-0887.450296
WU Minggang, WANG Yufeng, MA Zhe, SHEN Zhenxing. High-Order ThinWalled Curved Beam Elements With the Absolute Nodal Coordinate Formulation[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1394-1402. doi: 10.21656/1000-0887.450296
Citation: WU Minggang, WANG Yufeng, MA Zhe, SHEN Zhenxing. High-Order ThinWalled Curved Beam Elements With the Absolute Nodal Coordinate Formulation[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1394-1402. doi: 10.21656/1000-0887.450296

基于绝对节点坐标法的高阶薄壁曲梁单元

doi: 10.21656/1000-0887.450296
基金项目: 

国家自然科学基金(11702241);河北省自然科学基金(A2021203011)

详细信息
    作者简介:

    吴明港(1997—),男,博士生(E-mail: ruopeng@stumail.ysu.edu.cn);王玉凤(1999—),女,硕士生(E-mail: www18237298382@163.com);马喆(1999—),男,硕士生(E-mail: mazhemax@foxmail.com);沈振兴(1985—),男,副教授,博士,博士生导师(通讯作者. E-mail: shenzx@ysu.edu.cn).

    通讯作者:

    沈振兴(1985—),男,副教授,博士,博士生导师(通讯作者. E-mail: shenzx@ysu.edu.cn).

  • 中图分类号: O331

High-Order ThinWalled Curved Beam Elements With the Absolute Nodal Coordinate Formulation

Funds: 

The National Science Foundation of China(11702241)

  • 摘要: 薄壁曲梁的截面易出现畸变和翘曲现象,为了能够描述其在大转动、大变形情况下的截面变形行为,提出了一种基于绝对节点坐标法的高阶梁单元.借鉴Taylor级数展开模式构建了全局位置矢量场,通过增加单元横向节点的方式,避免了高阶导数几何意义不明确带来的困扰.基于非线性连续介质力学理论和坐标变换策略,推导了薄壁曲梁单元的广义弹性力表达式.通过与有限元软件中的薄壳单元进行比较,验证了该薄壁梁单元的准确性.
  • VIEIRA R F, VIRTUOSO F B E, PEREIRA E B R. Buckling of thin-walled structures through a higher order beam model[J].Computers and Structures,2017,180: 104-116.
    [2]YANG Y B, MO X Q, SHI K, et al. Effect of damping on torsional-flexural frequencies of monosymmetric thin-walled beams scanned by moving vehicles[J].Thin-Walled Structures,2024,198: 111633.
    [3]YUAN J R, DING H. Three-dimensional dynamic model of the curved pipe based on the absolute nodal coordinate formulation[J].Mechanical Systems and Signal Processing,2023,194: 110275.
    [4]YANG Y B, KUO S R. Effect of curvature on stability of curved beams[J].Journal of Structural Engineering,1987,113(6): 1185-1202.
    [5]CHOI S, KIM Y Y. Higher-order Vlasov torsion theory for thin-walled box beams[J].International Journal of Mechanical Sciences,2021,195: 106231.
    [6]YOON K Y, PARK N H, CHOI Y J, et al. Natural frequencies of thin-walled curved beams[J].Finite Elements in Analysis and Design,2006,42(13): 1176-1186.
    [7]CAI Y, CHEN H J, LV X Y, et al. Dynamic response of a thin-walled curved beam with a mono-symmetric cross-section under a moving mass[J].Thin-Walled Structures,2023,189: 110941.
    [8]PARK S K, GAO X L. Bernoulli-Euler beam model based on a modified couple stress theory[J].Journal of Micromechanics and Microengineering,2006,16(11): 2355-2359.
    [9]赵翔, 孟诗瑶. 基于Green函数分析Euler-Bernoulli双曲梁系统的受迫振动[J]. 应用数学和力学, 2023,44(2): 168-177.(ZHAO Xiang, MENG Shiyao. Forced vibration analysis of Euler-bernoulli double-beam systems by means of Green’s functions[J].Applied Mathematics and Mechanics,2023,44(2): 168-177. (in Chinese))
    [10]MANTA D, GONCALVES R. A geometrically exact Kirchhoff beam model including torsion warping[J].Computers & Structures,2016,177: 192-203.
    [11]卓英鹏, 王刚, 齐朝晖, 等. 节点参数含应变的空间几何非线性样条梁单元[J]. 应用数学和力学, 2022,43(9): 987-1003.(ZHUO Yingpeng, WANG Gang, QI Zhaohui, et al. A spatial geometric nonlinearity spline beam element with nodal parameters containing strains[J].Applied Mathematics and Mechanics,2022,43(9): 987-1003. (in Chinese))
    [12]SCHARDT R. Generalized beam theory: an adequate method for coupled stability problems[J].Thin-Walled Structures,1994,19(2/3/4): 161-180.
    [13]KIM H, JANG G W. Higher-order thin-walled beam analysis for axially varying generally shaped cross sections with straight cross-section edges[J].Computers & Structures,2017,189: 83-100.
    [14]VIEIRA R F, VIRTUOSO F B E, PEREIRA E B R. A higher order thin-walled beam model including warping and shear modes[J].International Journal of Mechanical Sciences,2013,66: 67-82.
    [15]VIEIRA R F, VIRTUOSO F B E, PEREIRA E B R. Definition of warping modes within the context of a higher order thin-walled beam model[J].Computers and Structures,2015,147: 68-78.
    [16]SHABANA A A. Definition of the slopes and the finite element absolute nodal coordinate formulation[J].Multibody System Dynamics,1997,1: 339-348.
    [17]MATIKAINEN M K, DMITROCHENKO O, MIKKOLA A.Beam elements with trapezoidal cross section deformation modes based on the absolute nodal coordinate formulation[C]//International Conference ofNumerical Analysis and Applied Mathematics 〖STBX〗2010. Rhodes, Greece: AIP Publishing, 2010: 1266-1270.
    [18]LI P, GANTOI F M, SHABANA A A. Higher order representation of the beam cross section deformation in large displacement finite element analysis[J].Journal of Sound and Vibration,2011,330(26): 6495-6508.
    [19]SHEN Z X, LI P, LIU C, et al. A finite element beam model including cross-section distortion in the absolute nodal coordinate formulation[J].Nonlinear Dynamics,2014,77(3): 1019-1033.
    [20]EBEL H, MATIKAINEN M K, HURSKAINEN V V, et al. Higher-order beam elements based on the absolute nodal coordinate formulation for three-dimensional elasticity[J].Nonlinear Dynamics,2017,88(2): 1075-1091.
    [21]赵北, 熊斯浚, 陈亮, 等. 基于弹性边界的多墙式盒段结构复合材料壁板屈曲分析方法[J]. 应用数学和力学, 2024,45(9): 1182-1199.(ZHAO Bei, XIONG Sijun, CHEN Liang, et al. A buckling analysis method for composite panels in multiweb box structures based on elastic boundaries[J].Applied Mathematics and Mechanics,2024,45(9): 1182-1199.(in Chinese))
    [22]SHEN Z. Thin-walled composite beam elementsvia the absolute nodal coordinate formulation[J].Multibody System Dynamics,2024,62(1): 107-135.
  • 加载中
计量
  • 文章访问数:  13
  • HTML全文浏览量:  2
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-30
  • 修回日期:  2025-01-06
  • 网络出版日期:  2025-12-05

目录

    /

    返回文章
    返回