• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型梯度多级六边形蜂窝面内耐撞性研究

周德 赵若朝 陶勇

周德, 赵若朝, 陶勇. 新型梯度多级六边形蜂窝面内耐撞性研究[J]. 应用数学和力学, 2025, 46(11): 1378-1393. doi: 10.21656/1000-0887.450306
引用本文: 周德, 赵若朝, 陶勇. 新型梯度多级六边形蜂窝面内耐撞性研究[J]. 应用数学和力学, 2025, 46(11): 1378-1393. doi: 10.21656/1000-0887.450306
ZHOU De, ZHAO Ruochao, TAO Yong. In-Plane Crashworthiness of Graded Hierarchical Hexagonal Honeycombs[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1378-1393. doi: 10.21656/1000-0887.450306
Citation: ZHOU De, ZHAO Ruochao, TAO Yong. In-Plane Crashworthiness of Graded Hierarchical Hexagonal Honeycombs[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1378-1393. doi: 10.21656/1000-0887.450306

新型梯度多级六边形蜂窝面内耐撞性研究

doi: 10.21656/1000-0887.450306
(我刊青年编委陶勇来稿)
基金项目: 

国家自然科学基金 1247022172

详细信息
    作者简介:

    周德(1980—),男,副教授,博士(E-mail: 210026@csu.edu.cn)

    通讯作者:

    陶勇(1990—),男,副教授,博士(通讯作者. E-mail: tao-yong@csu.edu.cn)

  • 中图分类号: O34

In-Plane Crashworthiness of Graded Hierarchical Hexagonal Honeycombs

(Contributed by TAO Yong, M.AMM Youth Editorial Board)
  • 摘要: 梯度设计和多级设计在提高蜂窝材料的力学和吸能性能方面各有优势. 受天然蜂窝的启发,该文基于梯度蜂窝材料和多级蜂窝材料,结合变壁厚梯度设计和节点型多级设计的概念,提出了一种新型梯度多级六边形蜂窝材料. 利用增材制造技术制备了梯度多级六边形蜂窝试件,并通过试验和数值模拟研究了新型梯度多级六边形蜂窝的面内耐撞性,分析对比了梯度设计和多级设计对梯度多级六边形蜂窝面内耐撞性的影响规律. 研究结果表明,结合梯度设计和多级设计可以显著增强蜂窝材料的面内耐撞性,且会出现明显的负Poisson比现象. 此外,相比于多级设计,梯度设计对蜂窝材料的力学和吸能性能的增强效果更加显著.
    1)  (我刊青年编委陶勇来稿)
  • 图  1  GHHH的构造过程

    Figure  1.  The construction process of the GHHH

    图  2  梯度多级六边形蜂窝3D打印试件

    Figure  2.  The 3D printed GHHH specimen

    图  3  准静态拉伸试验条件

    Figure  3.  Quasi-static tensile test conditions

    图  4  梯度多级六边形蜂窝准静态压缩试验装置

    Figure  4.  The quasi-static compressive test setup for the GHHH

    图  5  有限元模型

    Figure  5.  The finite element model

    图  6  试验与仿真结果的应力-应变曲线比较

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  6.  Comparison of stress-strain curves between experimental and numerical results

    图  7  具有不同参数的梯度多级六边形蜂窝的应力-应变曲线

    Figure  7.  Representative stress-strain curves of the GHHH with different parameters

    图  8  λ=0.3和k=0.3的梯度多级六边形蜂窝的变形模式

    Figure  8.  Deformation modes of the GHHH with λ=0.3 and k=0.3

    图  9  λ=0.5和k=0.6的梯度多级六边形蜂窝的变形模式

    Figure  9.  Deformation modes of the GHHH with λ=0.5 and k=0.6

    图  10  梯度多级六边形蜂窝的变形模式分类

    Figure  10.  The deformation modes diagram of the GHHH

    图  11  梯度多级六边形蜂窝的平台应力和比吸能随梯度参数的变化

    Figure  11.  The plateau stress and SEA of the GHHH vs. the gradient parameter

    图  12  具有不同梯度参数的梯度多级六边形蜂窝的Poisson比随应变的变化

    Figure  12.  Variations of Poisson's ratio with the strain for GHHHs with different gradient parameters

    图  13  梯度多级六边形蜂窝的平台应力和比吸能随多级参数的变化

    Figure  13.  The plateau stress and SEA of the GHHH vs. hierarchical parameters

    图  14  具有不同多级参数的梯度多级六边形蜂窝的Poisson比随应变的变化

    Figure  14.  Variations of Poisson's ratio with the strain for GHHHs with different hierarchical parameters

    图  15  负Poisson比的出现与梯度参数和多级参数的关系

    Figure  15.  The relationship between the appearance of negative Poisson's ratio and the gradient parameter and the hierarchical parameter

    图  16  梯度六边形蜂窝的平台应力和比吸能随梯度参数的变化

    Figure  16.  The plateau stress and SEA of the GHH vs. the gradient parameter

    图  17  具有不同梯度参数的梯度六边形蜂窝的Poisson比随应变的变化

    Figure  17.  Variations of Poisson's ratio with the strain for GHHs with different gradient parameters

    图  18  节点型多级六边形蜂窝的平台应力和比吸能随多级参数的变化

    Figure  18.  The plateau stress and SEA of the VHHH vs. the hierarchical parameter

    图  19  具有不同多级参数的节点型多级六边形蜂窝的Poisson比随应变的变化

    Figure  19.  Variations of Poisson's ratio with the strain for VHHHs with different hierarchical parameters

    图  20  不同构型蜂窝的平台应力和比吸能对比

    Figure  20.  Comparison of plateau stresses and SEAs of honeycombs with different configurations

    图  21  不同构型蜂窝的Poisson比对比

    Figure  21.  Comparison of Poisson's ratios of honeycombs with different configurations

    表  1  GHHH试件的几何参数

    Table  1.   The detailed parameters of the GHHH specimens

    L1 teq λ k ρ
    12 mm 0.8 mm 2/3 0.5 0.128 3
    下载: 导出CSV
  • [1] 田耕鑫, 曹升虎, 张健. 倒刺型接触超材料力学性能研究[J]. 应用数学和力学, 2024, 45(9): 1172-1181. doi: 10.21656/1000-0887.440285

    TIAN Gengxin, CAO Shenghu, ZHANG Jian. Study on mechanical properties of barbed contact metamaterials[J]. Applied Mathematics and Mechanics, 2024, 45(9): 1172-1181. (in Chinese) doi: 10.21656/1000-0887.440285
    [2] 原庆丹, 郭俊宏. 一维纳米准晶层合梁的非局部振动、屈曲与弯曲研究[J]. 应用数学和力学, 2024, 45(2): 208-219. doi: 10.21656/1000-0887.440260

    YUAN Qingdan, GUO Hongjun. Nonlocal vibration, buckling and bending of 1D layered quasicrystal nanobeams[J]. Applied Mathematics and Mechanics, 2024, 45(2): 208-219. (in Chinese) doi: 10.21656/1000-0887.440260
    [3] 王鑫特, 刘娟, 胡彪, 等. 多孔功能梯度压电纳米壳中波传播特性[J]. 应用数学和力学, 2024, 45(2): 197-207. doi: 10.21656/1000-0887.440057

    WANG Xinte, LIU Juan, HU Biao, et al. Wave propagation characteristics in porous functionally graded piezoelectric nanoshells[J]. Applied Mathematics and Mechanics, 2024, 45(2): 197-207. (in Chinese) doi: 10.21656/1000-0887.440057
    [4] MOUSANEZHAD D, BABAEE S, EBRAHIMI H, et al. Hierarchical honeycomb auxetic metamaterials[J]. Scientific Reports, 2015, 5: 18306. doi: 10.1038/srep18306
    [5] 王敏学. 分形梯度多孔材料及其夹芯结构抗冲击性能研究[D]. 南京: 东南大学, 2023.

    WANG Minxue. Study on impact behaviors of hierarchical graded cellular materials and sandwich structures[D]. Nanjing: Southeast University, 2023. (in Chinese)
    [6] 邓俊杰. 混合型层级蜂窝力学行为及耐撞性研究[D]. 长沙: 中南大学, 2023.

    DENG Junjie. Research on the mechanical behavior and crashworthiness of the hybrid hierarchical honeycomb[D]. Changsha: Central South University, 2023. (in Chinese)
    [7] TATLIER M S, MITAT Ö, BARAN T. Linear and non-linear in-plane behaviour of a modified re-entrant core cell[J]. Engineering Structures, 2021, 234: 111984. doi: 10.1016/j.engstruct.2021.111984
    [8] QI C, JIANG F, YANG S. Advanced honeycomb designs for improving mechanical properties: a review[J]. Composites (Part B): Engineering, 2021, 227: 109393. doi: 10.1016/j.compositesb.2021.109393
    [9] XU F, ZHANG X, ZHANG H. A review on functionally graded structures and materials for energy absorption[J]. Engineering Structures, 2018, 171: 309-325. doi: 10.1016/j.engstruct.2018.05.094
    [10] TAO Y, LI W, WEI K, et al. Mechanical properties and energy absorption of 3D printed square hierarchical honeycombs under in-plane axial compression[J]. Composites (Part B): Engineering, 2019, 176: 107219. doi: 10.1016/j.compositesb.2019.107219
    [11] QIN R, ZHOU J, CHEN B. Crashworthiness design and multiobjective optimization for hexagon honeycomb structure with functionally graded thickness[J]. Advances in Materials Science and Engineering, 2019, 2019: 8938696.
    [12] LI Z, JIANG Y, WANG T, et al. In-plane crushing behaviors of piecewise linear graded honeycombs[J]. Composite Structures, 2019, 207: 425-437. doi: 10.1016/j.compstruct.2018.09.036
    [13] TAO Y, DUAN S, WEN W, et al. Enhanced out-of-plane crushing strength and energy absorption of in-plane graded honeycombs[J]. Composites (Part B): Engineering, 2017, 118: 33-40. doi: 10.1016/j.compositesb.2017.03.002
    [14] YAO R, PANG T, ZHANG B, et al. On the crashworthiness of thin-walled multi-cell structures and materials: state of the art and prospects[J]. Thin-Walled Structures, 2023, 189: 110734. doi: 10.1016/j.tws.2023.110734
    [15] WANG Z, LI Z, SHI C, et al. Theoretical and numerical analysis of the folding mechanism of vertex-based hierarchical honeycomb structure[J]. Mechanics of Advanced Materials and Structures, 2020, 27(10): 789-799. doi: 10.1080/15376494.2019.1665760
    [16] WANG Z, DENG J, LIU K, et al. Hybrid hierarchical square honeycomb with widely tailorable effective in-plane elastic modulus[J]. Thin-Walled Structures, 2022, 171: 108816. doi: 10.1016/j.tws.2021.108816
    [17] WANG Z, DENG J, HE K, et al. Out-of-plane crushing behavior of hybrid hierarchical square honeycombs[J]. Thin-Walled Structures, 2022, 181: 110051. doi: 10.1016/j.tws.2022.110051
    [18] AJDARI A, JAHROMI B H, PAPADOPOULOS J, et al. Hierarchical honeycombs with tailorable properties[J]. International Journal of Solids and Structures, 2012, 49(11/12): 1413-1419.
    [19] CHEN Y, LI T, JIA Z, et al. 3D printed hierarchical honeycombs with shape integrity under large compressive deformations[J]. Materials & Design, 2018, 137: 226-234.
    [20] CHEN Y, JIA Z, WANG L. Hierarchical honeycomb lattice metamaterials with improved thermal resistance and mechanical properties[J]. Composite Structures, 2016, 152: 395-402. doi: 10.1016/j.compstruct.2016.05.048
    [21] WEN W, LEI M, TAO Y. The effect of material distribution on the out-of-plane elastic properties of hierarchical diamond honeycombs[J]. Engineering Structures, 2022, 272: 115000. doi: 10.1016/j.engstruct.2022.115000
    [22] LIU H, ZHANG E T, NG B F. In-plane dynamic crushing of a novel honeycomb with functionally graded fractal self-similarity[J]. Composite Structures, 2021, 270: 114106. doi: 10.1016/j.compstruct.2021.114106
    [23] WEN W, LEI M, TAO Y, et al. Out-of-plane crashworthiness of bio-inspired hierarchical diamond honeycombs with variable cell wall thickness[J]. Thin-Walled Structures, 2022, 176: 109347. doi: 10.1016/j.tws.2022.109347
    [24] TAYLOR C M, SMITH C W, MILLER W, et al. Functional grading in hierarchical honeycombs: density specific elastic performance[J]. Composite Structures, 2012, 94(8): 2296-2305. doi: 10.1016/j.compstruct.2012.01.021
    [25] GIBSON L, ASHBY M. Cellular Solids Structure and Properties[M]. Cambridge: Press Syndicate of the University of Cambridge, 1997.
    [26] TAO Y, LI W, CHENG T, et al. Out-of-plane dynamic crushing behavior of joint-based hierarchical honeycombs[J]. Journal of Sandwich Structures & Materials, 2021, 23(7): 2832-2855.
    [27] HE Q, FENG J, ZHOU H. A numerical study on the in-plane dynamic crushing of self-similar hierarchical honeycombs[J]. Mechanics of Materials, 2019, 138: 103151. doi: 10.1016/j.mechmat.2019.103151
    [28] WU Y, SUN L, YANG P, et al. Energy absorption of additively manufactured functionally bi-graded thickness honeycombs subjected to axial loads[J]. Thin-Walled Structures, 2021, 164: 107810. doi: 10.1016/j.tws.2021.107810
    [29] TAN H L, HE Z C, LI E, et al. Energy absorption characteristics of three-layered sandwich panels with graded re-entrant hierarchical honeycombs cores[J]. Aerospace Science and Technology, 2020, 106: 106073. doi: 10.1016/j.ast.2020.106073
    [30] ISAAC C W, DUDDECK F. Recent progress in 4D printed energy-absorbing metamaterials and structures[J]. Virtual and Physical Prototyping, 2023, 18: e2197436. doi: 10.1080/17452759.2023.2197436
    [31] ISAAC C W, SOKOŁOWSKI A, DUDDECK F, et al. Mechanical characterisation and crashworthiness performance of additively manufactured polymer-based honeycomb structures under in-plane quasi-static loading[J]. Virtual and Physical Prototyping, 2023, 18: e2273296. doi: 10.1080/17452759.2023.2273296
    [32] FENG G, LI S, XIAO L, et al. Energy absorption performance of honeycombs with curved cell walls under quasi-static compression[J]. International Journal of Mechanical Sciences, 2021, 210: 106746. doi: 10.1016/j.ijmecsci.2021.106746
    [33] LI S, LIU Z, SHIM V P W, et al. In-plane compression of 3D-printed self-similar hierarchical honeycombs: static and dynamic analysis[J]. Thin-Walled Structures, 2020, 157: 106990. doi: 10.1016/j.tws.2020.106990
    [34] HA N S, PHAM T M, CHEN W, et al. Crashworthiness analysis of bio-inspired fractal tree-like multi-cell circular tubes under axial crushing[J]. Thin-Walled Structures, 2021, 169: 108315. doi: 10.1016/j.tws.2021.108315
    [35] LIU H, ZHANG E T, WANG G, et al. In-plane crushing behavior and energy absorption of a novel graded honeycomb from hierarchical architecture[J]. International Journal of Mechanical Sciences, 2022, 221: 107202. doi: 10.1016/j.ijmecsci.2022.107202
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  99
  • HTML全文浏览量:  20
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-12
  • 修回日期:  2024-12-19
  • 刊出日期:  2025-11-01

目录

    /

    返回文章
    返回