• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双参数地基上四边自由矩形中厚板弯曲的有限积分变换精确解

胡波 程超宇 宜芳宇 安东琦

胡波, 程超宇, 宜芳宇, 安东琦. 双参数地基上四边自由矩形中厚板弯曲的有限积分变换精确解[J]. 应用数学和力学, 2025, 46(11): 1367-1377. doi: 10.21656/1000-0887.450307
引用本文: 胡波, 程超宇, 宜芳宇, 安东琦. 双参数地基上四边自由矩形中厚板弯曲的有限积分变换精确解[J]. 应用数学和力学, 2025, 46(11): 1367-1377. doi: 10.21656/1000-0887.450307
HU Bo, CHENG Chaoyu, YI Fangyu, AN Dongqi. Exact Bending Solutions of Rectangular Moderately Thick Plates Resting on 2-Parameter Foundations With 4 Edges Free With the Finite Integral Transform Method[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1367-1377. doi: 10.21656/1000-0887.450307
Citation: HU Bo, CHENG Chaoyu, YI Fangyu, AN Dongqi. Exact Bending Solutions of Rectangular Moderately Thick Plates Resting on 2-Parameter Foundations With 4 Edges Free With the Finite Integral Transform Method[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1367-1377. doi: 10.21656/1000-0887.450307

双参数地基上四边自由矩形中厚板弯曲的有限积分变换精确解

doi: 10.21656/1000-0887.450307
基金项目: 

中央高校基本科研业务费(DUT25Z2712)

辽宁省杰出青年基金(2025JH6/101100005)

国家自然科学基金(12372067)

详细信息
    作者简介:

    胡波(1984—),男,高级工程师,硕士(E-mail: 99975161@qq.com);程超宇(2000—),女,硕士生(E-mail: cheng111@mail.dlut.edu.cn);;宜芳宇(2001—),女,硕士生(E-mail: yifangyu@mail.dlut.edu.cn);安东琦(1996—),男,助理教授(通讯作者. E-mail: adq96@mail.dlut.edu.cn).

    通讯作者:

    安东琦(1996—),男,助理教授(通讯作者. E-mail: adq96@mail.dlut.edu.cn).

  • 中图分类号: O343

Exact Bending Solutions of Rectangular Moderately Thick Plates Resting on 2-Parameter Foundations With 4 Edges Free With the Finite Integral Transform Method

Funds: 

The National Science Foundation of China(12372067)

  • 摘要: 弹性地基上的中厚板是一类重要的工程承载结构,其承载后弯曲行为的研究具有重要理论意义和实用价值.同时考虑反力系数和剪切模量的双参数弹性地基模型可以准确描述板和地基之间的相互作用,利用二维有限积分变换方法推导出了双参数地基上四边自由矩形中厚板弯曲问题的精确解.由于在求解过程中不需要预先人为地选取位移函数,而是直接从问题的基本方程出发,利用有限积分变换的数学方法求出满足四边自由边界条件的精确解,因此问题的求解更加严格.通过计算实例验证了有限积分变换得到的精确解的正确性,相应的参数分析可以为工程设计提供理论基础.
  • 张福范. 弹性薄板[M]. 北京: 科学出版社, 1984: 89-91. (ZHANG Fufan.Elastic Thin Plate[M]. Beijing: Science Press,1984: 89

    -91. (in Chinese))
    [2]曲庆璋. 弹性板理论[M]. 北京: 人民交通出版社, 2000.(QU Qingzhang.Elastic Plate Theory[M]. Beijing: China Communications Press, 2000. (in Chinese))
    [3]HENWOOD D J, WHITEMAN J R, YETTRAM A L. Finite difference solution of a system of first-order partial differential equations[J].International Journal for Numerical Methods in Engineering,1981,17(9): 1385-1395.
    [4]FALLAH A, AGHDAM M M, KARGARNOVIN M H. Free vibration analysis of moderately thick functionally graded plates on elastic foundation using the extended Kantorovich method[J].Archive of Applied Mechanics,2013,83(2): 177-191.
    [5]JAHROMI H N, AGHDAM M M, FALLAH A. Free vibration analysis of Mindlin plates partially resting on Pasternak foundation[J].International Journal of Mechanical Sciences,2013,75: 1-7.
    [6]HAN J B, LIEW K M. Numerical differential quadrature method for Reissner/Mindlin plates on two-parameter foundations[J].International Journal of Mechanical Sciences,1997,39(9): 977-989.
    [7]NOBAKHTI S, AGHDAM M M. Static analysis of rectangular thick plates resting on two-parameter elastic boundary strips[J].European Journal of Mechanics A: Solids,2011,30(3): 442-448.
    [8]HENWOOD D J, WHITEMAN J R, YETTRAM A L. Fourier series solution for a rectangular thick plate with free edges on an elastic foundation[J].International Journal for Numerical Methods in Engineering,1982,18(12): 1801-1820.
    [9]YOO H H, PIERRE C. Modal characteristic of a rotating rectangular cantilever plate[J].Journal of Sound and Vibration,2003,259(1): 81-96.
    [10]石小平, 姚祖康. 弹性地基上四边自由矩形厚板的解[J]. 河北工学院学报, 1985,14(1): 54-72.(SHI Xiaoping, YAO Zukang. The solution of a rectangular thick plate with free edges on an elastic foundation[J].Journal of Hebei University of Technology,1985,14(1): 54-72. (in Chinese))
    [11]TIMOSHENKO S, WOINOWSKY-KRIEGER S.Theory of Plates and Shells[M]. 2nd ed. New York: McGraw-Hill Inc, 1959: 126-130.
    [12]QIAO J, HOU G, LIU J. Analytical solutions for the model of moderately thick plates by symplectic elasticity approach[J].AIMS Mathematics,2023,8(9): 20731-20754.
    [13]李锐, 田宇, 郑新然, 等. 求解弹性地基上自由矩形中厚板弯曲问题的辛-叠加方法[J]. 应用数学和力学, 2018,39(8): 875-891.(LI Rui, TIAN Yu, ZHENG Xinran, et al. A symplectic superposition method for bending problems of free-edge rectangular thick plates resting on elastic foundations[J].Applied Mathematics and Mechanics,2018,39(8): 875-891. (in Chinese))
    [14]丁凯文, 高芳清, 郑双星. 弹性地基上任意边界条件矩形中厚板的振动特性分析[J]. 四川轻化工大学学报(自然科学版), 2021,34(3): 69-76.(DING Kaiwen, GAO Fangqing, ZHENG Shuangxing. Vibration behavior analysis of rectangular thick plates with arbitrary boundary conditions on elastic foundation[J].Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2021,34(3): 69-76. (in Chinese))
    [15]LI H, PANG F, WANG X, et al. Benchmark solution for free vibration of moderately thick functionally graded sandwich sector plates on two-parameter elastic foundation with general boundary conditions[J].Shock and Vibration,2017,2017: 4018629.
    [16]夏平, 龙述尧, 胡玮军. 弹性地基中厚板弯曲问题的无网格LRPIM分析[J]. 岩土力学, 2010,31(2): 656-660.(XIA Ping, LONG Shuyao, HU Weijun. Bending analysis of moderately thick plates on elastic foundation by meshless local radial point interpolation method[J].Rock and Soil Mechanics,2010,31(2): 656-660. (in Chinese))
    [17]SNEDDON I H.The Use of Integral Transforms[M]. New York: McGraw-Hill Inc, 1972: 169-182.
    [18]钟阳, 孙爱民, 周福霖, 等. 弹性地基上四边自由矩形薄板分析的有限积分变换法[J]. 岩土工程学报, 2006,28(11): 2019-2022.(ZHONG Yang, SUN Aimin, ZHOU Fulin, et al. Analytical solution for rectangular thin plate on elastic foundation with four edges free by finite cosine integral transform method[J].Chinese Journal of Geotechnical Engineering,2006,28(11): 2019-2022. (in Chinese))
    [19]TIANB, LI R, ZHONG Y. Integral transform solutions to the bending problems of moderately thick rectangular plates with all edges free resting on elastic foundations[J].Applied Mathematical Modelling,2015,39(1): 128-136.
    [20]郑健龙, 张起森. 刚性路面设计理论新探[J]. 长沙交通学院学报, 1989,5(2): 55-64.(ZHENG Jianlong, ZHANG Qisen. A new approach for the design theories of the rigid pavements[J].Journal of Changsha Communications University,1989,5(2): 55-64. (in Chinese))
  • 加载中
计量
  • 文章访问数:  24
  • HTML全文浏览量:  2
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-12
  • 修回日期:  2025-01-20
  • 网络出版日期:  2025-12-05

目录

    /

    返回文章
    返回