Derivations and Applications of Stick-Slip Boundaries for 2 Creep Theories
-
摘要: 解析模型可以更好地理解蠕滑、自旋对黏滑区分布的影响,并快速确定接触斑黏滑分布. 为此,推导了Kalker简化理论和Polach理论的黏滑边界线解析表达式,并将其应用于轮轨磨耗计算. 计算结果表明:蠕滑率及接触斑长短轴比值较小时,两种理论得到的黏滑分区及应力分布一致性较好,随着蠕滑率和长短轴比值增加,结果逐渐出现差异. 轨面湿滑状态下,滑动区比例会明显增加,但是磨耗速率降低了20%~30%;制动等级对磨耗速率有显著影响,与常用制动相比,紧急制动使得磨耗大幅增加;列车速度提高使得轮轨滑动速度增加,加剧了磨耗速率.Abstract: The analytical solution helps better understand the effects of creep and spin on the stick-slip zone distributions and quickly determine the stick-slip distributions of contact patches. Therefore, the analytical expressions of stick-slip boundaries of the Kalker simplified theory and the Polach theory were derived and applied to the wheel-rail wear calculation. The calculation results show that, with small creepages and major axis-to-minor axis ratios of the contact patches, the stick-slip divisions and stress distributions obtained by the 2 theories are consistent. With the increases of the creepage and the major axis-to-minor axis ratio, the results gradually differ. For the wet rail surface, the slip zone proportion will increase significantly, but the wear rate will decrease by 20%~30%. The braking level has a significant effect on the wear rate, and the emergency braking causes a significant increase in wear compared to the normal braking. The increase of the train speed raises the wheel-rail sliding speed and aggravates the wear rate.
-
Key words:
- Polach theory /
- Hertz contact /
- stick-slip division /
- wheel-rail creep /
- wheel-rail wear
-
表 1 接触参数
Table 1. Parameters of wheel/rail contact
material parameters and axle weight major and minor axes/mm Kalker coefficient $f=0.3, N=100 \mathrm{kN}, G=8.4 \times 10^{10} \mathrm{~N} / \mathrm{m}^2$ $\begin{gathered} a=12, b=6 \\ a=8.5, b=8.5 \\ a=6, b=12 \end{gathered}$ $\begin{aligned} & C_{11}=5.10, C_{22}=4.90, C_{23}=2.62 \\ & C_{11}=4.12, C_{22}=3.67, C_{23}=1.47 \\ & C_{11}=3.62, C_{22}=3.01, C_{23}=0.93 \end{aligned}$ -
[1] HERTZ H. Uber die berührung fester elastischer körper[J]. Journal für Die Reine und Angewandte Mathematik, 1882, 92: 156-171. [2] 程亚平, 李志刚, 张强. 钢绞线丝间变形与感应加热效果数学模型的研究[J]. 应用数学和力学, 2016, 37(9): 915-923. doi: 10.21656/1000-0887.370010CHENG Yaping, LI Zhigang, ZHANG Qiang. Mathematical models for deformation between steel strand wires and induction heating effects[J]. Applied Mathematics and Mechanics, 2016, 37(9): 915-923. (in Chinese) doi: 10.21656/1000-0887.370010 [3] CARTER F W. On the action of a locomotive driving wheel[J]. Proceedings of the Royal Society of London, 1926, 112(760): 151-157. [4] VERMEULEN P J, JOHNSON K L. Contact of nonspherical elastic bodies transmitting tangential forces[J]. Journal of Applied Mechanics, 1964, 31(2): 338-340. doi: 10.1115/1.3629610 [5] KALKER J J. On the rolling contact of two elastic bodies in the presence of dry friction[R]. 1967. [6] KALKER J J. The computation of three-dimensional rolling contact with dry friction[J]. International Journal for Numerical Methods in Engineering, 1979, 14(9): 1293-1307. doi: 10.1002/nme.1620140904 [7] KALKER J J. A fast algorithm for the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982, 11(1): 1-13. doi: 10.1080/00423118208968684 [8] SHEN Z Y, HEDRICK J K, ELKINS J A. A comparison of alternative creep force models for rail vehicle dynamic analysis[J]. Vehicle System Dynamics, 1983, 12(1/3): 79-83. [9] POLACH O. A fast wheel-rail forces calculation computer code[J]. Vehicle System Dynamics, 1999, 33: 728-739. doi: 10.1080/00423114.1999.12063125 [10] 罗仁, 曾京, 戴焕云, 等. 高速列车车轮磨耗预测仿真[J]. 摩擦学学报, 2009, 29(6): 551-558.LUO Ren, ZENG Jing, DAI Huanyun, et al. Simulation on wheel wear prediction of high-speed train[J]. Tribology, 2009, 29(6): 551-558. (in Chinese) [11] 丁军君, 李芾, 黄运华. 基于蠕滑机理的车轮磨耗模型分析[J]. 中国铁道科学, 2010, 31(5): 66-72.DING Junjun, LI Fu, HUANG Yunhua. Analysis of the wheel wear model based on the creep mechanism[J]. China Railway Science, 2010, 31(5): 66-72. (in Chinese) [12] 朱文良, 郑树彬, 吴娜, 等. 适用于制动工况下的轮轨低黏着改进模型[J]. 铁道学报, 2021, 43(3): 34-41.ZHU Wenliang, ZHENG Shubin, WU Na, et al. Improved model for degraded wheel-rail adhesion under braking conditions[J]. Journal of the China Railway Society, 2021, 43(3): 34-41. (in Chinese) [13] 安博洋, 王平, 徐义新, 等. 基于POLACH方法的轮轨蠕滑曲线研究[J]. 机械工程学报, 2018, 54(4): 124-131.AN Boyang, WANG Ping, XU Yixin, et al. Study on wheel/rail creep curve based on POLACH's method[J]. Journal of Mechanical Engineering, 2018, 54(4): 124-131. (in Chinese) [14] 王平, 宋娟, 杨春凯, 等. 实测轮轨蠕滑曲线对钢轨磨耗影响分析[J]. 西南交通大学学报, 2024, 59(5): 1034-1042.WANG Ping, SONG Juan, YANG Chunkai, et al. Effect of measured wheel-rail creep curves on rail wear[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1034-1042. (in Chinese) [15] 宋娟, 王平, 陈雨, 等. 实测轮轨蠕滑曲线对车辆-轨道动态相互作用的影响分析[J]. 铁道标准设计, 2023, 67(6): 45-52.SONG Juan, WANG Ping, CHEN Yu, et al. Influence of measured wheel-rail creep curves on vehicle-track dynamic interaction[J]. Railway Standard Design, 2023, 67(6): 45-52. (in Chinese) [16] 陈爽, 陈雨, 潘自立, 等. 基于FASTSIM和TRIAL算法的轮轨切向接触模型研究[J]. 高速铁路技术, 2023, 14(6): 62-67.CHEN Shuang, CHEN Yu, PAN Zili, et al. A study on tangential wheel-rail contact model based on FASTSIM and TRIAL algorithms[J]. High Speed Railway Technology, 2023, 14(6): 62-67. (in Chinese) [17] YANG Y, DING J T, LI F, et al. Longitudinal vibration of a resilient wheel under the adhesion limit[J]. Proceedings of the Institution of Mechanical Engineers (Part F): Journal of Rail and Rapid Transit, 2019, 233(4): 370-381. [18] 鲁昌霖, 王志伟, 王权, 等. 考虑轮轨蠕滑的高速列车制动非线性振动行为研究[J]. 重庆理工大学学报(自然科学), 2023, 37(6): 10-19.LU Changlin, WANG Zhiwei, WANG Quan, et al. Research on nonlinear braking vibration of high-speed trains considering wheel-rail creep[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(6): 10-19. (in Chinese) [19] ZIREK A, VOLTR P, LATA M, et al. An adaptive sliding mode control to stabilize wheel slip and improve traction performance[J]. Proceedings of the Institution of Mechanical Engineers (Part F): Journal of Rail and Rapid Transit, 2018, 232(10): 2392-2405. [20] QI Y, DAI H. Influence of motor harmonic torque on wheel wear in high-speed trains[J]. Proceedings of the Institution of Mechanical Engineers (Part F): Journal of Rail and Rapid Transit, 2020, 234(1): 32-42. [21] 王志强, 雷震宇. 谐波型波磨激扰下轮轨系统接触蠕滑特性[J]. 计算力学学报, 2020, 37(6): 735-742.WANG Zhiqiang, LEI Zhenyu. Contact and creep characteristics of wheelrail system under harmonic corrugation excitation[J]. Chinese Journal of Computational Mechanics, 2020, 37(6): 735-742. (in Chinese) [22] 李可, 刘学文, 张经纬, 等. 低阶谐波磨耗轮对引起的轮轨及等效人体动态响应分析[J]. 计算力学学报, 2020, 37(1): 42-47.LI Ke, LIU Xuewen, ZHANG Jingwei, et al. Analysis of wheel-rail and equivalent human dynamic response due to low-order harmonic wear wheel-sets[J]. Chinese Journal of Computational Mechanics, 2020, 37(1): 42-47. (in Chinese) [23] XIAO G W, WU B, YAO L Q, et al. The traction behaviour of high-speed train under low adhesion condition[J]. Engineering Failure Analysis, 2022, 131: 105858. [24] LU C X, CHEN D L, SHI J, et al. Research on wheel-rail dynamic interaction of high-speed railway under low adhesion condition[J]. Engineering Failure Analysis, 2024, 157: 107935. [25] JENDEL T. Prediction of wheel profile wear: comparisons with field measurements[J]. Wear, 2002, 253(1/2): 89-99. -