留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两种蠕滑理论黏滑分界线的解析推导及其应用

程畅 王垚韡 陆晨旭 陈迪来

程畅, 王垚韡, 陆晨旭, 陈迪来. 两种蠕滑理论黏滑分界线的解析推导及其应用[J]. 应用数学和力学, 2025, 46(8): 1050-1063. doi: 10.21656/1000-0887.450317
引用本文: 程畅, 王垚韡, 陆晨旭, 陈迪来. 两种蠕滑理论黏滑分界线的解析推导及其应用[J]. 应用数学和力学, 2025, 46(8): 1050-1063. doi: 10.21656/1000-0887.450317
CHENG Chang, WANG Yaowei, LU Chenxu, CHEN Dilai. Derivations and Applications of Stick-Slip Boundaries for 2 Creep Theories[J]. Applied Mathematics and Mechanics, 2025, 46(8): 1050-1063. doi: 10.21656/1000-0887.450317
Citation: CHENG Chang, WANG Yaowei, LU Chenxu, CHEN Dilai. Derivations and Applications of Stick-Slip Boundaries for 2 Creep Theories[J]. Applied Mathematics and Mechanics, 2025, 46(8): 1050-1063. doi: 10.21656/1000-0887.450317

两种蠕滑理论黏滑分界线的解析推导及其应用

doi: 10.21656/1000-0887.450317
基金项目: 

上海科技创新行动计划 21210750300

上海启明星计划 22YF1447600

详细信息
    作者简介:

    程畅(1970—),男,教授(E-mail: chengnahc@163.com)

    通讯作者:

    陆晨旭(1994—),男,讲师,博士(通讯作者. E-mail: 18810327668@163.com)

  • 中图分类号: TH212; TH213.3

Derivations and Applications of Stick-Slip Boundaries for 2 Creep Theories

  • 摘要: 解析模型可以更好地理解蠕滑、自旋对黏滑区分布的影响,并快速确定接触斑黏滑分布. 为此,推导了Kalker简化理论和Polach理论的黏滑边界线解析表达式,并将其应用于轮轨磨耗计算. 计算结果表明:蠕滑率及接触斑长短轴比值较小时,两种理论得到的黏滑分区及应力分布一致性较好,随着蠕滑率和长短轴比值增加,结果逐渐出现差异. 轨面湿滑状态下,滑动区比例会明显增加,但是磨耗速率降低了20%~30%;制动等级对磨耗速率有显著影响,与常用制动相比,紧急制动使得磨耗大幅增加;列车速度提高使得轮轨滑动速度增加,加剧了磨耗速率.
  • 图  1  椭圆接触斑

    Figure  1.  The elliptical contact patch

    图  2  黏滑区划分

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  2.  Stick-slip zone divisions

    图  3  不同蠕滑率条件下的黏滑区划分

    Figure  3.  Stick-slip zone divisions under various creepages

    图  4  切向应力分布(Y=0)

    Figure  4.  Distributions of tangential stresses

    图  5  不同蠕滑率条件下的应力分布

    Figure  5.  Distributions of tangential stresses under various creepages

    图  6  不同长短半轴比条件下的黏滑区划分

    Figure  6.  Stick-slip zone divisions under various ratios of major semiaxes to minor semiaxes

    图  7  不同长短半轴比条件下的切向应力分布

    Figure  7.  Distributions of tangential stresses under various ratios of major semiaxes to minor semiaxes

    图  8  法向应力分布

    Figure  8.  Distributions of normal stresses

    图  9  纯蠕滑条件下的蠕滑力-率特性曲线

    Figure  9.  Creep force-creepage characteristic curves under pure creep

    图  10  纯自旋条件下的蠕滑力-率特性曲线

    Figure  10.  Creep force-creepage characteristic curves under pure spin

    图  11  磨耗计算示意图

    Figure  11.  The schematic diagram of wear calculation

    图  12  磨耗系数

    Figure  12.  The coefficient of wear

    图  13  不同制动等级下的轮轨磨耗速率

    Figure  13.  The wheel/rail wear rates under various braking levels

    图  14  不同制动条件下的黏滑分布(Polach理论)

    Figure  14.  Stick-slip zone divisions under various braking levels (Polach theory)

    图  15  不同摩擦因数条件下轮轨磨耗速率

    Figure  15.  The wheel/rail wear rates under various friction coefficients

    图  16  不同摩擦因数条件下的黏滑分布(Polach理论)

    Figure  16.  Stick-slip zone divisions under various friction coefficients (Polach theory)

    图  17  不同速度条件下的轮轨磨耗速率

    Figure  17.  The wheel/rail wear rates under various running speeds

    表  1  接触参数

    Table  1.   Parameters of wheel/rail contact

    material parameters and axle weight major and minor axes/mm Kalker coefficient
    $f=0.3, N=100 \mathrm{kN}, G=8.4 \times 10^{10} \mathrm{~N} / \mathrm{m}^2$ $\begin{gathered} a=12, b=6 \\ a=8.5, b=8.5 \\ a=6, b=12 \end{gathered}$ $\begin{aligned} & C_{11}=5.10, C_{22}=4.90, C_{23}=2.62 \\ & C_{11}=4.12, C_{22}=3.67, C_{23}=1.47 \\ & C_{11}=3.62, C_{22}=3.01, C_{23}=0.93 \end{aligned}$
    下载: 导出CSV
  • [1] HERTZ H. Uber die berührung fester elastischer körper[J]. Journal für Die Reine und Angewandte Mathematik, 1882, 92: 156-171.
    [2] 程亚平, 李志刚, 张强. 钢绞线丝间变形与感应加热效果数学模型的研究[J]. 应用数学和力学, 2016, 37(9): 915-923. doi: 10.21656/1000-0887.370010

    CHENG Yaping, LI Zhigang, ZHANG Qiang. Mathematical models for deformation between steel strand wires and induction heating effects[J]. Applied Mathematics and Mechanics, 2016, 37(9): 915-923. (in Chinese) doi: 10.21656/1000-0887.370010
    [3] CARTER F W. On the action of a locomotive driving wheel[J]. Proceedings of the Royal Society of London, 1926, 112(760): 151-157.
    [4] VERMEULEN P J, JOHNSON K L. Contact of nonspherical elastic bodies transmitting tangential forces[J]. Journal of Applied Mechanics, 1964, 31(2): 338-340. doi: 10.1115/1.3629610
    [5] KALKER J J. On the rolling contact of two elastic bodies in the presence of dry friction[R]. 1967.
    [6] KALKER J J. The computation of three-dimensional rolling contact with dry friction[J]. International Journal for Numerical Methods in Engineering, 1979, 14(9): 1293-1307. doi: 10.1002/nme.1620140904
    [7] KALKER J J. A fast algorithm for the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982, 11(1): 1-13. doi: 10.1080/00423118208968684
    [8] SHEN Z Y, HEDRICK J K, ELKINS J A. A comparison of alternative creep force models for rail vehicle dynamic analysis[J]. Vehicle System Dynamics, 1983, 12(1/3): 79-83.
    [9] POLACH O. A fast wheel-rail forces calculation computer code[J]. Vehicle System Dynamics, 1999, 33: 728-739. doi: 10.1080/00423114.1999.12063125
    [10] 罗仁, 曾京, 戴焕云, 等. 高速列车车轮磨耗预测仿真[J]. 摩擦学学报, 2009, 29(6): 551-558.

    LUO Ren, ZENG Jing, DAI Huanyun, et al. Simulation on wheel wear prediction of high-speed train[J]. Tribology, 2009, 29(6): 551-558. (in Chinese)
    [11] 丁军君, 李芾, 黄运华. 基于蠕滑机理的车轮磨耗模型分析[J]. 中国铁道科学, 2010, 31(5): 66-72.

    DING Junjun, LI Fu, HUANG Yunhua. Analysis of the wheel wear model based on the creep mechanism[J]. China Railway Science, 2010, 31(5): 66-72. (in Chinese)
    [12] 朱文良, 郑树彬, 吴娜, 等. 适用于制动工况下的轮轨低黏着改进模型[J]. 铁道学报, 2021, 43(3): 34-41.

    ZHU Wenliang, ZHENG Shubin, WU Na, et al. Improved model for degraded wheel-rail adhesion under braking conditions[J]. Journal of the China Railway Society, 2021, 43(3): 34-41. (in Chinese)
    [13] 安博洋, 王平, 徐义新, 等. 基于POLACH方法的轮轨蠕滑曲线研究[J]. 机械工程学报, 2018, 54(4): 124-131.

    AN Boyang, WANG Ping, XU Yixin, et al. Study on wheel/rail creep curve based on POLACH's method[J]. Journal of Mechanical Engineering, 2018, 54(4): 124-131. (in Chinese)
    [14] 王平, 宋娟, 杨春凯, 等. 实测轮轨蠕滑曲线对钢轨磨耗影响分析[J]. 西南交通大学学报, 2024, 59(5): 1034-1042.

    WANG Ping, SONG Juan, YANG Chunkai, et al. Effect of measured wheel-rail creep curves on rail wear[J]. Journal of Southwest Jiaotong University, 2024, 59(5): 1034-1042. (in Chinese)
    [15] 宋娟, 王平, 陈雨, 等. 实测轮轨蠕滑曲线对车辆-轨道动态相互作用的影响分析[J]. 铁道标准设计, 2023, 67(6): 45-52.

    SONG Juan, WANG Ping, CHEN Yu, et al. Influence of measured wheel-rail creep curves on vehicle-track dynamic interaction[J]. Railway Standard Design, 2023, 67(6): 45-52. (in Chinese)
    [16] 陈爽, 陈雨, 潘自立, 等. 基于FASTSIM和TRIAL算法的轮轨切向接触模型研究[J]. 高速铁路技术, 2023, 14(6): 62-67.

    CHEN Shuang, CHEN Yu, PAN Zili, et al. A study on tangential wheel-rail contact model based on FASTSIM and TRIAL algorithms[J]. High Speed Railway Technology, 2023, 14(6): 62-67. (in Chinese)
    [17] YANG Y, DING J T, LI F, et al. Longitudinal vibration of a resilient wheel under the adhesion limit[J]. Proceedings of the Institution of Mechanical Engineers (Part F): Journal of Rail and Rapid Transit, 2019, 233(4): 370-381.
    [18] 鲁昌霖, 王志伟, 王权, 等. 考虑轮轨蠕滑的高速列车制动非线性振动行为研究[J]. 重庆理工大学学报(自然科学), 2023, 37(6): 10-19.

    LU Changlin, WANG Zhiwei, WANG Quan, et al. Research on nonlinear braking vibration of high-speed trains considering wheel-rail creep[J]. Journal of Chongqing University of Technology (Natural Science), 2023, 37(6): 10-19. (in Chinese)
    [19] ZIREK A, VOLTR P, LATA M, et al. An adaptive sliding mode control to stabilize wheel slip and improve traction performance[J]. Proceedings of the Institution of Mechanical Engineers (Part F): Journal of Rail and Rapid Transit, 2018, 232(10): 2392-2405.
    [20] QI Y, DAI H. Influence of motor harmonic torque on wheel wear in high-speed trains[J]. Proceedings of the Institution of Mechanical Engineers (Part F): Journal of Rail and Rapid Transit, 2020, 234(1): 32-42.
    [21] 王志强, 雷震宇. 谐波型波磨激扰下轮轨系统接触蠕滑特性[J]. 计算力学学报, 2020, 37(6): 735-742.

    WANG Zhiqiang, LEI Zhenyu. Contact and creep characteristics of wheelrail system under harmonic corrugation excitation[J]. Chinese Journal of Computational Mechanics, 2020, 37(6): 735-742. (in Chinese)
    [22] 李可, 刘学文, 张经纬, 等. 低阶谐波磨耗轮对引起的轮轨及等效人体动态响应分析[J]. 计算力学学报, 2020, 37(1): 42-47.

    LI Ke, LIU Xuewen, ZHANG Jingwei, et al. Analysis of wheel-rail and equivalent human dynamic response due to low-order harmonic wear wheel-sets[J]. Chinese Journal of Computational Mechanics, 2020, 37(1): 42-47. (in Chinese)
    [23] XIAO G W, WU B, YAO L Q, et al. The traction behaviour of high-speed train under low adhesion condition[J]. Engineering Failure Analysis, 2022, 131: 105858.
    [24] LU C X, CHEN D L, SHI J, et al. Research on wheel-rail dynamic interaction of high-speed railway under low adhesion condition[J]. Engineering Failure Analysis, 2024, 157: 107935.
    [25] JENDEL T. Prediction of wheel profile wear: comparisons with field measurements[J]. Wear, 2002, 253(1/2): 89-99.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  6
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-20
  • 修回日期:  2025-03-24
  • 刊出日期:  2025-08-01

目录

    /

    返回文章
    返回