| [1] |
GALDI G P, RIONERO S. A note on the existence and uniqueness of solutions of the micropolar fluid equations[J]. International Journal of Engineering Science, 1977, 15 (2): 105-108. doi: 10.1016/0020-7225(77)90025-8
|
| [2] |
COWIN S C. Polar fluids[J]. The Physics of Fluids, 1968, 11 (9): 1919-1927. doi: 10.1063/1.1692219
|
| [3] |
ERINGEN A. Theory of micropolar fluids[J]. Indiana University Mathematics Journal, 1966, 16 (1): 16001.
|
| [4] |
ŁUKASZEWICZ G. Micropolar Fluids: Theory and Applications[M]. Boston: Birkhäuser, 1999.
|
| [5] |
JIA C M, TAN Z, ZHOU J F. Global well-posedness of compressible magneto-micropolar fluid equations[J]. The Journal of Geometric Analysis, 2023, 33 : 358. doi: 10.1007/s12220-023-01418-3
|
| [6] |
ROJAS-MEDAR M A. Magneto-micropolar fluid motion: existence and uniqueness of strong solution[J]. Mathematische Nachrichten, 1997, 188 (1): 301-319. doi: 10.1002/mana.19971880116
|
| [7] |
ROJAS MEDAR M A, BOLDRINI J L. Magneto-micropolar fluid motion: existence of weak solutions[J]. Revista Matemática Complutense, 1998, 11 (2): 443-460.
|
| [8] |
ŁUKASZEWICZ G, SADOWSKI W. Uniform attractor for 2D magneto-micropolar fluid flow in some unbounded domains[J]. Zeitschrift für Angewandte Mathematik und Physik ZAMP, 2004, 55 (2): 247-257.
|
| [9] |
MATSUURA K. Exponential attractors for 2D magneto-micropolor fluid flow in bounded domain[J]. Discrete and Continuous Dynamical Systems, 2005, 2005 : 634-641.
|
| [10] |
YANG H J, HAN X L, WANG X, et al. Homogenization of trajectory statistical solutions for the 3D incompressible magneto-micropolar fluids[J]. Discrete and Continuous Dynamical Systems: S, 2023, 16 (10): 2672-2685. doi: 10.3934/dcdss.2022202
|
| [11] |
NICHE C J, PERUSATO C F. Sharp decay estimates and asymptotic behaviour for 3D magneto-micropolar fluids[J]. Zeitschrift für Angewandte Mathematik und Physik, 2022, 73 : 48.
|
| [12] |
TAN Z, WU W, ZHOU J. Global existence and decay estimate of solutions to magneto-micropolar fluid equations[J]. Journal of Differential Equations, 2019, 266 (7): 4137-4169. doi: 10.1016/j.jde.2018.09.027
|
| [13] |
ZHAO C, LI Y, ŁUKASZEWICZ G. Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids[J]. Zeitschrift für Angewandte Mathematik und Physik, 2020, 71 (4): 141.
|
| [14] |
LI Y, LI X. Equivalence between invariant measures and statistical solutions for the 2D non-autonomous magneto-micropolar fluid equations[J]. Mathematical Methods in the Applied Sciences, 2022, 45 (5): 2638-2657. doi: 10.1002/mma.7944
|
| [15] |
田琴, 向长林, 别群益. 三维稳态磁流体动力学方程的Liouville定理[J]. 应用数学和力学, 2023, 44 (10): 1250-1259. doi: 10.21656/1000-0887.430375TIAN Qin, XIANG Changlin, BIE Qunyi. On the Liouville theorems for 3D stationary magnetohydrodynamic equations[J]. Applied Mathematics and Mechanics, 2023, 44 (10): 1250-1259. (in Chinese) doi: 10.21656/1000-0887.430375
|
| [16] |
FOIAS C, MANLEY O, ROSA R, et al. Navier-Stokes Equations and Turbulence[M]. Cambridge: Cambridge University Press, 2001.
|
| [17] |
SUN W. The boundedness and upper semicontinuity of the pullback attractors for a 2D micropolar fluid flows with delay[J]. Electronic Research Archive, 2020, 28 (3): 1343-1356. doi: 10.3934/era.2020071
|
| [18] |
ARRIETA J M, CARVALHO A N. Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations[J]. Transactions of the American Mathematical Society, 2000, 352 (1): 285-310.
|
| [19] |
FUJITA H, KATO T. On the Navier-Stokes initial value problem I[J]. Archive for Rational Mechanics and Analysis, 1964, 26 : 269-315.
|
| [20] |
SUN W, LI Y. Pullback dynamical behaviors of the non-autonomous micropolar fluid flows with minimally regular force and moment[J]. Communications in Mathematical Sciences, 2018, 16 (4): 1043-1065. doi: 10.4310/CMS.2018.v16.n4.a6
|
| [21] |
TEMAM R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M]. New York: Springer-Verlag, 2012.
|
| [22] |
GARCÍA-LUENGO J, MARÍN-RUBIO P, REAL J, et al. Pullback attractors for the non-autonomous 2D Navier-Stokes equations for minimally regular forcing[J]. Discrete & Continuous Dynamical Systems: A, 2014, 34 (1): 203-227.
|