• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁微极流方程组紧的拉回吸收集的存在性

田从洋 孙文龙

田从洋, 孙文龙. 磁微极流方程组紧的拉回吸收集的存在性[J]. 应用数学和力学, 2025, 46(11): 1491-1500. doi: 10.21656/1000-0887.450334
引用本文: 田从洋, 孙文龙. 磁微极流方程组紧的拉回吸收集的存在性[J]. 应用数学和力学, 2025, 46(11): 1491-1500. doi: 10.21656/1000-0887.450334
TIAN Congyang, SUN Wenlong. Existence of the Compact Pullback Absorbing Family for Magneto-Micropolar Fluid Equations[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1491-1500. doi: 10.21656/1000-0887.450334
Citation: TIAN Congyang, SUN Wenlong. Existence of the Compact Pullback Absorbing Family for Magneto-Micropolar Fluid Equations[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1491-1500. doi: 10.21656/1000-0887.450334

磁微极流方程组紧的拉回吸收集的存在性

doi: 10.21656/1000-0887.450334
基金项目: 

国家自然科学基金 12301294

湖北省自然科学基金 2022CFB661

湖北省教育厅科学研究计划青年人才基金项目 Q20231309

详细信息
    作者简介:

    田从洋(1999—),男,硕士(E-mail: yangtze24@126.com)

    通讯作者:

    孙文龙(1988—),男,副教授,博士(通讯作者. E-mail: wenlongsun1988@163.com)

  • 中图分类号: O175.29

Existence of the Compact Pullback Absorbing Family for Magneto-Micropolar Fluid Equations

  • 摘要: 在二维有界区域上研究了磁微极流方程组的拉回动力学行为. 运用半群方法和ε-正则性方法, 结合Sobolev空间嵌入理论, 在不同条件下, 分别证明了空间$\hat{H}$和空间$\hat{V}$中紧的拉回吸收集的存在性.
  • [1] GALDI G P, RIONERO S. A note on the existence and uniqueness of solutions of the micropolar fluid equations[J]. International Journal of Engineering Science, 1977, 15 (2): 105-108. doi: 10.1016/0020-7225(77)90025-8
    [2] COWIN S C. Polar fluids[J]. The Physics of Fluids, 1968, 11 (9): 1919-1927. doi: 10.1063/1.1692219
    [3] ERINGEN A. Theory of micropolar fluids[J]. Indiana University Mathematics Journal, 1966, 16 (1): 16001.
    [4] ŁUKASZEWICZ G. Micropolar Fluids: Theory and Applications[M]. Boston: Birkhäuser, 1999.
    [5] JIA C M, TAN Z, ZHOU J F. Global well-posedness of compressible magneto-micropolar fluid equations[J]. The Journal of Geometric Analysis, 2023, 33 : 358. doi: 10.1007/s12220-023-01418-3
    [6] ROJAS-MEDAR M A. Magneto-micropolar fluid motion: existence and uniqueness of strong solution[J]. Mathematische Nachrichten, 1997, 188 (1): 301-319. doi: 10.1002/mana.19971880116
    [7] ROJAS MEDAR M A, BOLDRINI J L. Magneto-micropolar fluid motion: existence of weak solutions[J]. Revista Matemática Complutense, 1998, 11 (2): 443-460.
    [8] ŁUKASZEWICZ G, SADOWSKI W. Uniform attractor for 2D magneto-micropolar fluid flow in some unbounded domains[J]. Zeitschrift für Angewandte Mathematik und Physik ZAMP, 2004, 55 (2): 247-257.
    [9] MATSUURA K. Exponential attractors for 2D magneto-micropolor fluid flow in bounded domain[J]. Discrete and Continuous Dynamical Systems, 2005, 2005 : 634-641.
    [10] YANG H J, HAN X L, WANG X, et al. Homogenization of trajectory statistical solutions for the 3D incompressible magneto-micropolar fluids[J]. Discrete and Continuous Dynamical Systems: S, 2023, 16 (10): 2672-2685. doi: 10.3934/dcdss.2022202
    [11] NICHE C J, PERUSATO C F. Sharp decay estimates and asymptotic behaviour for 3D magneto-micropolar fluids[J]. Zeitschrift für Angewandte Mathematik und Physik, 2022, 73 : 48.
    [12] TAN Z, WU W, ZHOU J. Global existence and decay estimate of solutions to magneto-micropolar fluid equations[J]. Journal of Differential Equations, 2019, 266 (7): 4137-4169. doi: 10.1016/j.jde.2018.09.027
    [13] ZHAO C, LI Y, ŁUKASZEWICZ G. Statistical solution and partial degenerate regularity for the 2D non-autonomous magneto-micropolar fluids[J]. Zeitschrift für Angewandte Mathematik und Physik, 2020, 71 (4): 141.
    [14] LI Y, LI X. Equivalence between invariant measures and statistical solutions for the 2D non-autonomous magneto-micropolar fluid equations[J]. Mathematical Methods in the Applied Sciences, 2022, 45 (5): 2638-2657. doi: 10.1002/mma.7944
    [15] 田琴, 向长林, 别群益. 三维稳态磁流体动力学方程的Liouville定理[J]. 应用数学和力学, 2023, 44 (10): 1250-1259. doi: 10.21656/1000-0887.430375

    TIAN Qin, XIANG Changlin, BIE Qunyi. On the Liouville theorems for 3D stationary magnetohydrodynamic equations[J]. Applied Mathematics and Mechanics, 2023, 44 (10): 1250-1259. (in Chinese) doi: 10.21656/1000-0887.430375
    [16] FOIAS C, MANLEY O, ROSA R, et al. Navier-Stokes Equations and Turbulence[M]. Cambridge: Cambridge University Press, 2001.
    [17] SUN W. The boundedness and upper semicontinuity of the pullback attractors for a 2D micropolar fluid flows with delay[J]. Electronic Research Archive, 2020, 28 (3): 1343-1356. doi: 10.3934/era.2020071
    [18] ARRIETA J M, CARVALHO A N. Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations[J]. Transactions of the American Mathematical Society, 2000, 352 (1): 285-310.
    [19] FUJITA H, KATO T. On the Navier-Stokes initial value problem I[J]. Archive for Rational Mechanics and Analysis, 1964, 26 : 269-315.
    [20] SUN W, LI Y. Pullback dynamical behaviors of the non-autonomous micropolar fluid flows with minimally regular force and moment[J]. Communications in Mathematical Sciences, 2018, 16 (4): 1043-1065. doi: 10.4310/CMS.2018.v16.n4.a6
    [21] TEMAM R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics[M]. New York: Springer-Verlag, 2012.
    [22] GARCÍA-LUENGO J, MARÍN-RUBIO P, REAL J, et al. Pullback attractors for the non-autonomous 2D Navier-Stokes equations for minimally regular forcing[J]. Discrete & Continuous Dynamical Systems: A, 2014, 34 (1): 203-227.
  • 加载中
计量
  • 文章访问数:  68
  • HTML全文浏览量:  18
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-18
  • 修回日期:  2025-01-21
  • 刊出日期:  2025-11-01

目录

    /

    返回文章
    返回