留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

挠曲电声子晶体梁的波动特性分析

杨莎莎 孔燚帆 沈承

杨莎莎, 孔燚帆, 沈承. 挠曲电声子晶体梁的波动特性分析[J]. 应用数学和力学, 2025, 46(8): 1037-1049. doi: 10.21656/1000-0887.460003
引用本文: 杨莎莎, 孔燚帆, 沈承. 挠曲电声子晶体梁的波动特性分析[J]. 应用数学和力学, 2025, 46(8): 1037-1049. doi: 10.21656/1000-0887.460003
YANG Shasha, KONG Yifan, SHEN Cheng. Analysis of Wave Propagation Properties of Flexoelectric Phononic Crystal Beams[J]. Applied Mathematics and Mechanics, 2025, 46(8): 1037-1049. doi: 10.21656/1000-0887.460003
Citation: YANG Shasha, KONG Yifan, SHEN Cheng. Analysis of Wave Propagation Properties of Flexoelectric Phononic Crystal Beams[J]. Applied Mathematics and Mechanics, 2025, 46(8): 1037-1049. doi: 10.21656/1000-0887.460003

挠曲电声子晶体梁的波动特性分析

doi: 10.21656/1000-0887.460003
基金项目: 

国家自然科学基金 12202183

国家自然科学基金 12472089

国家重点研发计划 2023YFB4604800

详细信息
    作者简介:

    杨莎莎(1986—),女,校聘副教授,博士(E-mail: 2016100849@niit.edu.cn)

    通讯作者:

    沈承(1986—),男,副教授,博士,硕士生导师(通讯作者. E-mail: cshen@nuaa.edu.cn)

  • 中图分类号: O32

Analysis of Wave Propagation Properties of Flexoelectric Phononic Crystal Beams

  • 摘要: 当结构尺度减小到微纳米尺寸时,一种新型的力电耦合效应(即挠曲电效应)愈发重要. 建立了在微尺寸下考虑挠曲电效应的声子晶体梁模型,研究了结构的色散曲线以及振动响应. 首先基于挠曲电效应的纳米电介质理论,从电学Gibbs自由能密度出发,得到了挠曲电材料的本构方程. 并基于Bernoulli-Euler梁的理论假设和变分原理推导出考虑挠曲电效应、微惯性效应以及动挠曲电效应的梁的振动控制方程. 通过传递矩阵法计算考虑了挠曲电效应的声子晶体梁的能带结构,以及有限长悬臂梁的固有频率. 研究了挠曲电效应以及结构参数对固有频率和带隙的影响规律. 结果表明,挠曲电效应显著提高了固有频率,可通过改变结构参数来获得更宽带隙. 仿真结果与理论结果吻合较好,验证了理论方法的有效性. 该文工作可为今后考虑挠曲电效应的微纳米声子晶体梁的设计提供理论指导.
    (Recommended by LIU Shaobao, M.AMM Editorial Board)
    1)  (我刊编委刘少宝推荐)
  • 图  1  挠曲电声子晶体梁示意图

    Figure  1.  Schematic of the flexoelectric phononic crystal beam

    图  2  材料A和B的横截面尺寸

    Figure  2.  Cross sections of materials A and B

    图  3  考虑各种微观效应的声子晶体梁色散曲线

    Figure  3.  Dispersion curves of phononic crystal beams under various microscopic effects

    图  4  第一带隙频率随单胞长度变化曲线

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  4.  Variations of the 1st gap frequencies with cell lengths

    图  5  单胞数以及厚度比对梁固有频率的影响曲线

    Figure  5.  Influence curves of cell numbers and thickness ratios on natural frequencies of the beam

    图  6  挠曲电效应与厚度比对声子晶体梁固有频率的影响

    Figure  6.  Influences of the flexoelectric effect and thickness ratio on natural frequencies of the phonon crystal beam

    图  7  单胞数以及长度比对梁固有频率的影响曲线

    Figure  7.  Influence curves of cell numbers and length ratios on natural frequencies of the beam

    图  8  挠曲电效应与长度比对声子晶体梁固有频率的影响

    Figure  8.  Influences of the flexoelectric effect and the length ratio on natural frequencies of the phonon crystal beam

    图  9  第一禁带带宽变化曲线

    Figure  9.  Variation curves of the 1st bandgap bandwidth

    图  10  第一禁带中心频率变化曲线

    Figure  10.  Variation curves of center frequency of the 1st bandgap

    图  11  COMSOL有限元仿真与理论计算结果对比

    Figure  11.  Comparison of COMSOL simulation and theoretical calculation results

    图  12  不同单胞数量下的位移传输损失曲线

    Figure  12.  Displacement transmission loss curves for different cell numbers

    表  1  声子晶体梁的材料和几何性质

    Table  1.   Material and geometric properties of phonon crystal beams

    parameter BaTiO3 SrTiO3
    relative permittivity (a) 4×103 3×102
    ρ/(kg/m3) 4.50×103 4.81×103
    f/(C/m) 5.0×10-4 1.0×10-4
    E/(N/m2) 1.62×1011 3.50×1011
    b/m 1×10-10 1×10-10
    下载: 导出CSV
  • [1] KOGAN S M. Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals[J]. Soviet Physics: Solid State, 1964, 5(10): 2069-2070.
    [2] HARRIS P. Mechanism for the shock polarization of dielectrics[J]. Journal of Applied Physics, 1965, 36(3): 739-741. doi: 10.1063/1.1714210
    [3] MINDLIN R D. Polarization gradient in elastic dielectrics[J]. International Journal of Solids and Structures, 1968, 4(6): 637-642. doi: 10.1016/0020-7683(68)90079-6
    [4] ASKAR A, LEE P C Y, CAKMAK A S. Lattice-dynamics approach to the theory of elastic dielectrics with polarization gradient[J]. Physical Review B, 1970, 1(8): 3525-3537. doi: 10.1103/PhysRevB.1.3525
    [5] INDENBOM V L, LOGINOV E B, OSIPOV M A. The flexoelectric effect and the structure of crystals[J]. Soviet Physics: Crystallography, 1981, 26(6): 656-658.
    [6] BURSIAN E V, TRUNOV N N. Nonlocal piezoelectric effect[J]. Soviet Physics: Solid State, 1974, 16(4): 760-762.
    [7] MARANGANTI R, SHARMA N D, SHARMA P. Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green's function solutions and embedded inclusions[J]. Physical Review B, 2006, 74: 014110. doi: 10.1103/PhysRevB.74.014110
    [8] HU S L, SHEN S P. Electric field gradient theory with surface effect for nano-dielectrics[J]. Computers, Materials & Continua, 2009, 13(1): 63-87.
    [9] SHEN S P, HU S L. A theory of flexoelectricity with surface effect for elastic dielectrics[J]. Journal of the Mechanics and Physics of Solids, 2010, 58(5): 665-677. doi: 10.1016/j.jmps.2010.03.001
    [10] BRILLOUIN L. Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices[M]. Mineola, NY: Dover Publications, 2003.
    [11] MARTÍNEZ-SALA R, SANCHO J, SÁNCHEZ J V, et al. Sound attenuation by sculpture[J]. Nature, 1995, 378(6554): 241.
    [12] SIGALAS M M, ECONOMOU E N. Elastic and acoustic wave band structure[J]. Journal of Sound Vibration, 1992, 158(2): 377-382. doi: 10.1016/0022-460X(92)90059-7
    [13] KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993, 71(13): 2022-2025. doi: 10.1103/PhysRevLett.71.2022
    [14] LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736. doi: 10.1126/science.289.5485.1734
    [15] GOLUB M V, ZHANG C Z, WANG Y S. SH-wave propagation and resonance phenomena in a periodically layered composite structure with a crack[J]. Journal of Sound and Vibration, 2011, 330(13): 3141-3154. doi: 10.1016/j.jsv.2011.01.018
    [16] BENCHABANE S, KHELIF A, RAUCH J Y, et al. Evidence for complete surface wave band gap in a piezoelectric phononic crystal[J]. Physical Review E, 2006, 73(6): 065601.
    [17] LIU C C, HU S L, SHEN S P. Effect of flexoelectricity on band structures of one-dimensional phononic crystals[J]. Journal of Applied Mechanics, 2014, 81(5): 051007. doi: 10.1115/1.4026017
    [18] YANG W J, HU T T, LIANG X, et al. On band structures of layered phononic crystals with flexoelectricity[J]. Archive of Applied Mechanics, 2018, 88(5): 629-644. doi: 10.1007/s00419-017-1332-z
    [19] YANG W J, DENG Q, LIANG X, et al. Lamb wave propagation with flexoelectricity and strain gradient elasticity considered[J]. Smart Materials and Structures, 2018, 27(8): 085003. doi: 10.1088/1361-665X/aacd34
    [20] HU T T, YANG W J, LIANG X, et al. Wave propagation in flexoelectric microstructured solids[J]. Journal of Elasticity, 2018, 130(2): 197-210. doi: 10.1007/s10659-017-9636-3
    [21] HAN L, ZHANG Y, NI Z Q, et al. A modified transfer matrix method for the study of the bending vibration band structure in phononic crystal Euler beams[J]. Physica B: Condensed Matter, 2012, 407(23): 4579-4583. doi: 10.1016/j.physb.2012.08.022
    [22] LIANG X, SHEN S P. Dynamic analysis of Bernoulli-Euler piezoelectric nanobeam with electrostatic force[J]. Science China: Physics, Mechanics and Astronomy, 2013, 56(10): 1930-1937. doi: 10.1007/s11433-013-5214-2
    [23] LIANG X, SHEN S P. Effect of electrostatic force on a piezoelectric nanobeam[J]. Smart Materials and Structures, 2012, 21(1): 015001. doi: 10.1088/0964-1726/21/1/015001
    [24] SHEN C, KONG Y, LU T J, et al. Localization of elastic waves in one-dimensional detuned phononic crystals with flexoelectric effect[J]. International Journal of Smart and Nano Materials, 2022, 13(2): 244-262. doi: 10.1080/19475411.2022.2069875
    [25] 赵昊阳, 何状状, 张春利. 多孔挠曲电型超材料板中的弯曲波分析[J]. 应用数学和力学, 2024, 45(11): 1405-1415. doi: 10.21656/1000-0887.450282

    ZHAO Haoyang, HE Zhuangzhuang, ZHANG Chunli. Bending wave analysis of porous flexoelectric metamaterial plates[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1405-1415. (in Chinese) doi: 10.21656/1000-0887.450282
    [26] 郝一涵, 田新鹏, 邓谦. 固体材料中微孔洞间挠曲电场的相互作用[J]. 应用数学和力学, 2024, 45(11): 1381-1391. doi: 10.21656/1000-0887.450208

    HAO Yihan, TIAN Xinpeng, DENG Qian. Interaction between flexoelectric fields associated with microholes in solids[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1381-1391. (in Chinese) doi: 10.21656/1000-0887.450208
    [27] HE Z Z, ZHANG C L, ZHANG C Z, et al. Programmable dielectric metamaterial platesvia flexoelectricity and L-C circuits[J]. International Journal of Mechanical Sciences, 2025, 286: 109937. doi: 10.1016/j.ijmecsci.2025.109937
    [28] EXADAKTYLOS G E, VARDOULAKIS I. Surface instability in gradient elasticity with surface energy[J]. International Journal of Solids and Structures, 1998, 35(18): 2251-2281. doi: 10.1016/S0020-7683(97)89945-3
    [29] XU L, SHEN S P. Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity[J]. International Journal of Applied Mechanics, 2013, 5(2): 1350015.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  2
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-07
  • 修回日期:  2025-02-15
  • 刊出日期:  2025-08-01

目录

    /

    返回文章
    返回