Analysis of Wave Propagation Properties of Flexoelectric Phononic Crystal Beams
other
-
摘要: 当结构尺度减小到微纳米尺寸时,一种新型的力电耦合效应(即挠曲电效应)愈发重要. 建立了在微尺寸下考虑挠曲电效应的声子晶体梁模型,研究了结构的色散曲线以及振动响应. 首先基于挠曲电效应的纳米电介质理论,从电学Gibbs自由能密度出发,得到了挠曲电材料的本构方程. 并基于Bernoulli-Euler梁的理论假设和变分原理推导出考虑挠曲电效应、微惯性效应以及动挠曲电效应的梁的振动控制方程. 通过传递矩阵法计算考虑了挠曲电效应的声子晶体梁的能带结构,以及有限长悬臂梁的固有频率. 研究了挠曲电效应以及结构参数对固有频率和带隙的影响规律. 结果表明,挠曲电效应显著提高了固有频率,可通过改变结构参数来获得更宽带隙. 仿真结果与理论结果吻合较好,验证了理论方法的有效性. 该文工作可为今后考虑挠曲电效应的微纳米声子晶体梁的设计提供理论指导.Abstract: When the structural scale is reduced to the micro and nano sizes, a new type of electromechanical coupling effect (i.e. the flexoelectric effect) becomes increasingly important. A phononic crystal beam model with the flexoelectric effect in micro scale was established. The dispersion curves and vibration responses of the structure were studied. Based on the nanodielectric theory under flexoelectric effects, the constitutive equation for flexoelectric materials was derived from the electrical Gibbs free energy density. Based on the theoretical hypothesis of the Bernoulli-Euler beam and the variational principle, the governing vibration equation for the beam under flexoelectric effects, micro-inertial effects and dynamic flexoelectric effects, was derived. The energy band structure of a phonon crystal beam under flexoelectric effects and the natural frequencies of a finite length cantilever beam were calculated with the transfer matrix method. The flexoelectric effects and the influences of structural parameters on natural frequencies and band gaps were studied. The results show that, the flexoelectric effect significantly increases the natural frequency, and the wider band gap can be obtained by the change of the structural parameters. The simulation results are in good agreement with the theoretical ones, which proves the validity of the theoretical method. The work provides a theoretical guidance for the future design of micro and nano phonon crystal beams under the flexoelectric effects.
-
Key words:
- flexoelectric effect /
- phononic crystal beam /
- dispersion curve /
- natural frequency /
- transfer matrix
other(Recommended by LIU Shaobao, M.AMM Editorial Board)
1) (我刊编委刘少宝推荐) -
表 1 声子晶体梁的材料和几何性质
Table 1. Material and geometric properties of phonon crystal beams
parameter BaTiO3 SrTiO3 relative permittivity (a) 4×103 3×102 ρ/(kg/m3) 4.50×103 4.81×103 f/(C/m) 5.0×10-4 1.0×10-4 E/(N/m2) 1.62×1011 3.50×1011 b/m 1×10-10 1×10-10 -
[1] KOGAN S M. Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals[J]. Soviet Physics: Solid State, 1964, 5(10): 2069-2070. [2] HARRIS P. Mechanism for the shock polarization of dielectrics[J]. Journal of Applied Physics, 1965, 36(3): 739-741. doi: 10.1063/1.1714210 [3] MINDLIN R D. Polarization gradient in elastic dielectrics[J]. International Journal of Solids and Structures, 1968, 4(6): 637-642. doi: 10.1016/0020-7683(68)90079-6 [4] ASKAR A, LEE P C Y, CAKMAK A S. Lattice-dynamics approach to the theory of elastic dielectrics with polarization gradient[J]. Physical Review B, 1970, 1(8): 3525-3537. doi: 10.1103/PhysRevB.1.3525 [5] INDENBOM V L, LOGINOV E B, OSIPOV M A. The flexoelectric effect and the structure of crystals[J]. Soviet Physics: Crystallography, 1981, 26(6): 656-658. [6] BURSIAN E V, TRUNOV N N. Nonlocal piezoelectric effect[J]. Soviet Physics: Solid State, 1974, 16(4): 760-762. [7] MARANGANTI R, SHARMA N D, SHARMA P. Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green's function solutions and embedded inclusions[J]. Physical Review B, 2006, 74: 014110. doi: 10.1103/PhysRevB.74.014110 [8] HU S L, SHEN S P. Electric field gradient theory with surface effect for nano-dielectrics[J]. Computers, Materials & Continua, 2009, 13(1): 63-87. [9] SHEN S P, HU S L. A theory of flexoelectricity with surface effect for elastic dielectrics[J]. Journal of the Mechanics and Physics of Solids, 2010, 58(5): 665-677. doi: 10.1016/j.jmps.2010.03.001 [10] BRILLOUIN L. Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices[M]. Mineola, NY: Dover Publications, 2003. [11] MARTÍNEZ-SALA R, SANCHO J, SÁNCHEZ J V, et al. Sound attenuation by sculpture[J]. Nature, 1995, 378(6554): 241. [12] SIGALAS M M, ECONOMOU E N. Elastic and acoustic wave band structure[J]. Journal of Sound Vibration, 1992, 158(2): 377-382. doi: 10.1016/0022-460X(92)90059-7 [13] KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters, 1993, 71(13): 2022-2025. doi: 10.1103/PhysRevLett.71.2022 [14] LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736. doi: 10.1126/science.289.5485.1734 [15] GOLUB M V, ZHANG C Z, WANG Y S. SH-wave propagation and resonance phenomena in a periodically layered composite structure with a crack[J]. Journal of Sound and Vibration, 2011, 330(13): 3141-3154. doi: 10.1016/j.jsv.2011.01.018 [16] BENCHABANE S, KHELIF A, RAUCH J Y, et al. Evidence for complete surface wave band gap in a piezoelectric phononic crystal[J]. Physical Review E, 2006, 73(6): 065601. [17] LIU C C, HU S L, SHEN S P. Effect of flexoelectricity on band structures of one-dimensional phononic crystals[J]. Journal of Applied Mechanics, 2014, 81(5): 051007. doi: 10.1115/1.4026017 [18] YANG W J, HU T T, LIANG X, et al. On band structures of layered phononic crystals with flexoelectricity[J]. Archive of Applied Mechanics, 2018, 88(5): 629-644. doi: 10.1007/s00419-017-1332-z [19] YANG W J, DENG Q, LIANG X, et al. Lamb wave propagation with flexoelectricity and strain gradient elasticity considered[J]. Smart Materials and Structures, 2018, 27(8): 085003. doi: 10.1088/1361-665X/aacd34 [20] HU T T, YANG W J, LIANG X, et al. Wave propagation in flexoelectric microstructured solids[J]. Journal of Elasticity, 2018, 130(2): 197-210. doi: 10.1007/s10659-017-9636-3 [21] HAN L, ZHANG Y, NI Z Q, et al. A modified transfer matrix method for the study of the bending vibration band structure in phononic crystal Euler beams[J]. Physica B: Condensed Matter, 2012, 407(23): 4579-4583. doi: 10.1016/j.physb.2012.08.022 [22] LIANG X, SHEN S P. Dynamic analysis of Bernoulli-Euler piezoelectric nanobeam with electrostatic force[J]. Science China: Physics, Mechanics and Astronomy, 2013, 56(10): 1930-1937. doi: 10.1007/s11433-013-5214-2 [23] LIANG X, SHEN S P. Effect of electrostatic force on a piezoelectric nanobeam[J]. Smart Materials and Structures, 2012, 21(1): 015001. doi: 10.1088/0964-1726/21/1/015001 [24] SHEN C, KONG Y, LU T J, et al. Localization of elastic waves in one-dimensional detuned phononic crystals with flexoelectric effect[J]. International Journal of Smart and Nano Materials, 2022, 13(2): 244-262. doi: 10.1080/19475411.2022.2069875 [25] 赵昊阳, 何状状, 张春利. 多孔挠曲电型超材料板中的弯曲波分析[J]. 应用数学和力学, 2024, 45(11): 1405-1415. doi: 10.21656/1000-0887.450282ZHAO Haoyang, HE Zhuangzhuang, ZHANG Chunli. Bending wave analysis of porous flexoelectric metamaterial plates[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1405-1415. (in Chinese) doi: 10.21656/1000-0887.450282 [26] 郝一涵, 田新鹏, 邓谦. 固体材料中微孔洞间挠曲电场的相互作用[J]. 应用数学和力学, 2024, 45(11): 1381-1391. doi: 10.21656/1000-0887.450208HAO Yihan, TIAN Xinpeng, DENG Qian. Interaction between flexoelectric fields associated with microholes in solids[J]. Applied Mathematics and Mechanics, 2024, 45(11): 1381-1391. (in Chinese) doi: 10.21656/1000-0887.450208 [27] HE Z Z, ZHANG C L, ZHANG C Z, et al. Programmable dielectric metamaterial platesvia flexoelectricity and L-C circuits[J]. International Journal of Mechanical Sciences, 2025, 286: 109937. doi: 10.1016/j.ijmecsci.2025.109937 [28] EXADAKTYLOS G E, VARDOULAKIS I. Surface instability in gradient elasticity with surface energy[J]. International Journal of Solids and Structures, 1998, 35(18): 2251-2281. doi: 10.1016/S0020-7683(97)89945-3 [29] XU L, SHEN S P. Size-dependent piezoelectricity and elasticity due to the electric field-strain gradient coupling and strain gradient elasticity[J]. International Journal of Applied Mechanics, 2013, 5(2): 1350015. -