3D Analytical Solutions of Mechatronic Coupling for Functionally Graded Piezoelectric Material Plates With a Circular Hole
-
摘要: 在推广后的England-Spencer功能梯度板理论基础上,该研究进一步将功能梯度弹性材料推广到了功能梯度压电材料,研究了含有圆孔无限大横观各向同性功能梯度压电材料板在机械荷载作用下的三维响应. 该板理论将三维问题转化为二维问题,利用复变函数解法,通过求解四个解析函数获得具体边值问题的三维解析解. 针对在无穷远处受机械荷载作用的含圆孔功能梯度压电材料板,利用边界条件确定了四个解析函数的具体表达形式. 通过数值算例讨论了材料参数沿板厚方向呈指数函数梯度变化时,边界条件和相关参数对圆孔边上三维应力的影响. 该解析方法可为分析功能梯度压电板的三维孔口问题提供有效解析求解手段.Abstract: Based on the extended England-Spencer functionally graded plate theory, the functionally graded elastic material (FGM) was extended to functionally graded piezoelectric material (FGPM) and the responses of the transversely isotropic FGPM plate containing a circular hole were investigated. By virtue of this theory, a 3D boundary value problem can be transformed into a 2D one. The 3D analytical solution was obtained from 4 analytical functions based on the complex variable function method. For a FGPM plate with a circular hole and subjected to mechanical loads, the specific expressions of the 4 analytical functions were determined according to the boundary conditions. Numerical examples were presented to discuss the effects of boundary conditions and relevant parameters on the 3D stresses along the circular hole edge with the material parameters varying exponentially along the plate thickness. The analytical method provides an effective tool for accurate analysis of 3D hole-related issues in functionally graded piezoelectric plates.
-
Key words:
- functionally graded piezoelectric material /
- circular hole /
- mechatronic coupling /
- complex function /
- analytic solution
edited-byedited-by1) (我刊编委陈伟球推荐) -
表 1 横观各向同性HPM板孔边的力矩Mθ/M0对比
Table 1. Torque ratios Mθ/M0 at the edge of a hole in a transversely isotropic HPM plate
θ 0 0.523 1.046 1.569 2.092 2.615 3.141 the present -0.083 0.462 1.561 2.130 1.561 0.462 -0.083 ref. [12] -0.092 0.445 1.542 2.105 1.542 0.445 -0.092 表 2 横观各向同性FGM板孔边的力矩Mθ/M对比
Table 2. Torque ratios Mθ/M at the edge of a hole in a transversely isotropic FGM plate
θ 0 0.523 1.046 1.569 2.092 2.615 3.141 the present 0.224 0.667 1.552 1.996 1.552 0.667 0.224 ref. [17] 0.224 0.667 1.552 1.996 1.552 0.667 0.224 表 3 材料参数的变化形式对孔边环向应力集中的影响
Table 3. The impacts of material parameter variations on circumferential stress concentrations around the hole
material parameter variation P1 P2 P3 P4 maxσα FGM plate 3.801 3.618 3.408 3.348 FGPM plate 3.567 3.565 3.363 3.285 magnitude of stress concentration relief of the FGPM plate compared to the FGM plate 6.16% 1.46% 1.32% 1.88% -
[1] 宋晨晨, 严新锐, 张子傲, 等. 功能梯度材料制备技术研究进展[J]. 表面技术, 2022, 51(12): 20-38.SONG Chenchen, YAN Xinrui, ZHANG Ziao, et al. Research progress in manufacturing technology of functionally graded materials[J]. Surface Technology, 2022, 51(12): 20-38. (in Chinese) [2] SANG Y, PENG K, DING Z, et al. Environmental vibration energy collection technology based on piezoelectric and electromagnetic model[J]. Mechanics of Advanced Materials and Structures, 2022, 29(25): 3595-3601. [3] RUBIO W M, VATANABE S L, PAULINO G H. Functionally Graded Piezoelectric Material Systems: a Multiphysics Perspective[M]. Wiley-VCH, 2015. [4] YUANX, SHI J, KANG Y, et al. Piezoelectricity, pyroelectricity, and ferroelectricity in biomaterials and biomedical applications[J]. Advanced Materials, 2024, 36(3): e2308726. [5] LIANG Y C, SUN Y P, WU L N. Hole problems in a circular piezoelectric plate[J]. Transactions of the Canadian Society for Mechanical Engineering, 2016, 40(4): 491-500. [6] RAO D K N, BABU M R, ALAMIREW A, et al. A general solution for electromechanical analysis of electroelastic composite plates with arbitrary holes[J]. Heliyon, 2024, 10(15): e35272. [7] 蔡斌, 周立明. 基于非均匀光滑有限元法的含圆孔功能梯度压电板应力和电场集中因子分析[J]. 中南大学学报(自然科学版), 2018, 49(5): 1080-1086.CAI Bin, ZHOU Liming. Analysis of stress and electric field concentration in a functionally graded piezoelectric plate with a circular hole based on nonhomogeneous smoothed finite element method[J]. Journal of Central South University (Science and Technology), 2018, 49(5): 1080-1086. (in Chinese) [8] 孟广伟, 王晖, 周立明, 等. 含孔功能梯度压电材料板的力电耦合无网格伽辽金法[J]. 中南大学学报(自然科学版), 2015, 46(11): 4015-4020.MENG Guangwei, WANG Hui, ZHOU Liming, et al. Electromechanical element-free Galerkin method for functionally graded piezoelectric plate with circular hole[J]. Journal of Central South University (Science and Technology), 2015, 46(11): 4015-4020. (in Chinese) [9] NGUYEN L B, THAI C H, ZENKOUR A M, et al. An isogeometric Bézier finite element method for vibration analysis of functionally graded piezoelectric material porous plates[J]. International Journal of Mechanical Sciences, 2019, 157: 165-183. [10] MIAO X Y, LI G Q. Analysis of piezoelectric plates with a hole using nature boundary integral equation and domain decomposition[J]. Engineering Analysis With Boundary Elements, 2014, 40: 71-77. [11] 王鑫特, 刘娟, 胡彪, 等. 多孔功能梯度压电纳米壳中波传播特性[J]. 应用数学和力学, 2024, 45(2): 197-207. doi: 10.21656/1000-0887.440057WANG Xinte, LIU Juan, HU Biao, et al. Wave propagation in functionally graded piezoelectric nanoshells[J]. Applied Mathematics and Mechanics, 2024, 45(2): 197-207. (in Chinese) doi: 10.21656/1000-0887.440057 [12] XU S P, WANG W. Bending of piezoelectric plates with a circular hole[J]. Acta Mechanica, 2009, 203(3): 127-135. [13] 刘淑红, 李延强, 沈英明. 含椭圆孔压电材料的电弹场[J]. 工程力学, 2012, 29(12): 45-50.LIU Shuhong, LI Yanqiang, SHEN Yingming. The electro-elastic fields of piezoelectric materials with an elliptic hole[J]. Engineering Mechanics, 2012, 29(12): 45-50. (in Chinese) [14] SASAKI T, SUZUKI T, HIRASHIMA K. Transversely isotropic piezoelectric materials with an arbitrarily shaped boundary[J]. Acta Mechanica, 2006, 184(1): 217-230. [15] KUMARI S, UPHADHYAY A K, SHUKLA K K. Stress analysis for an infinite plate with circular holes[J]. Materials Today: Proceedings, 2017, 4(2): 2323-2332. [16] ENGLAND A H, SPENCER A J M. Complex variable solutions for inhomogeneous and laminated elastic plates[J]. Mathematics and Mechanics of Solids, 2005, 10(5): 503-539. [17] YANG B, CHEN W Q, DING H J. 3D elasticity solutions for equilibrium problems of transversely isotropic FGM plates with holes[J]. Acta Mechanica, 2015, 226(5): 1571-1590. [18] CHEN W Q, LEE K Y. Alternative state space formulations for magnetoelectric thermoelasticity with transverse isotropy and the application to bending analysis of nonhomogeneous plates[J]. International Journal of Solids and Structures, 2003, 40(21): 5689-5705. [19] 沈璐璐, 蔡方圆, 杨博. 功能梯度压电板柱面弯曲的弹性力学解[J]. 应用数学和力学, 2023, 44(3): 272-281. doi: 10.21656/1000-0887.430224SHEN Lulu, CAI Fangyuan, YANG Bo. Elasticity solutions for cylindrical bending of functionally graded piezoelectric material plates[J]. Applied Mathematics and Mechanics, 2023, 44(3): 272-281. (in Chinese) doi: 10.21656/1000-0887.430224 [20] SHADOWITZ A, SCOTT W T. The electromagnetic field[J]. American Journal of Physics, 1976, 44(6): 611-616. [21] DING H, CHEN W. Three Dimensional Problems of Piezoelasticity[M]. Huntington N Y: Nova Science Publishers, 2001. -
下载:
渝公网安备50010802005915号