• Scopus收录
  • CSCD来源期刊
  • 中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含圆孔功能梯度压电材料板的力电耦合三维解析解

张友源 范慧朵 沈璐璐 杨博

张友源, 范慧朵, 沈璐璐, 杨博. 含圆孔功能梯度压电材料板的力电耦合三维解析解[J]. 应用数学和力学, 2025, 46(11): 1416-1428. doi: 10.21656/1000-0887.460016
引用本文: 张友源, 范慧朵, 沈璐璐, 杨博. 含圆孔功能梯度压电材料板的力电耦合三维解析解[J]. 应用数学和力学, 2025, 46(11): 1416-1428. doi: 10.21656/1000-0887.460016
ZHANG Youyuan, FAN Huiduo, SHEN Lulu, YANG Bo. 3D Analytical Solutions of Mechatronic Coupling for Functionally Graded Piezoelectric Material Plates With a Circular Hole[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1416-1428. doi: 10.21656/1000-0887.460016
Citation: ZHANG Youyuan, FAN Huiduo, SHEN Lulu, YANG Bo. 3D Analytical Solutions of Mechatronic Coupling for Functionally Graded Piezoelectric Material Plates With a Circular Hole[J]. Applied Mathematics and Mechanics, 2025, 46(11): 1416-1428. doi: 10.21656/1000-0887.460016

含圆孔功能梯度压电材料板的力电耦合三维解析解

doi: 10.21656/1000-0887.460016
(我刊编委陈伟球推荐)
基金项目: 

国家自然科学基金 11872336

详细信息
    作者简介:

    张友源(2000—), 男, 硕士生(E-mail: 1161321979@qq.com)

    范慧朵(1999—), 女, 硕士生(E-mail: 19857129053@163.com)

    沈璐璐(1990—), 女, 副教授, 博士(E-mail: lulushen@zstu.edu.cn)

    通讯作者:

    杨博(1979—), 男, 教授, 博士(通讯作者. E-mail: youngbo@zstu.edu.cn)

  • 中图分类号: O343.8

3D Analytical Solutions of Mechatronic Coupling for Functionally Graded Piezoelectric Material Plates With a Circular Hole

(Recommended by CHEN Weiqiu, M.AMM Editorial Board)
  • 摘要: 在推广后的England-Spencer功能梯度板理论基础上,该研究进一步将功能梯度弹性材料推广到了功能梯度压电材料,研究了含有圆孔无限大横观各向同性功能梯度压电材料板在机械荷载作用下的三维响应. 该板理论将三维问题转化为二维问题,利用复变函数解法,通过求解四个解析函数获得具体边值问题的三维解析解. 针对在无穷远处受机械荷载作用的含圆孔功能梯度压电材料板,利用边界条件确定了四个解析函数的具体表达形式. 通过数值算例讨论了材料参数沿板厚方向呈指数函数梯度变化时,边界条件和相关参数对圆孔边上三维应力的影响. 该解析方法可为分析功能梯度压电板的三维孔口问题提供有效解析求解手段.
    1)  (我刊编委陈伟球推荐)
  • 图  1  含圆孔无限大FGPM板示意图

    Figure  1.  Schematic diagram of an infinite FGPM material plate with a circular hole

    图  2  无限多连通区域的示意图

    Figure  2.  Diagram of an infinitely connected region

    图  3  无穷远处受单向拉伸作用时孔边无量纲环向应力分布

       为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  Distributions of dimensionless circumferential stresses around the hole in a plate under uniaxial tension at infinity

    图  4  无穷远处受单边弯曲作用时孔边无量纲环向应力分布

    Figure  4.  Distributions of dimensionless circumferential stresses around the hole in a plate under unilateral bending at infinity

    图  5  无穷远处受扭转作用时孔边无量纲环向应力分布

    Figure  5.  Distributions of dimensionless circumferential stresses around the hole in a plate under torsion at infinity

    图  6  无穷远处受双向拉伸作用时孔边无量纲环向应力分布

    Figure  6.  Distributions of dimensionless circumferential stresses around the hole in a plate under biaxial tension at infinity

    图  7  无穷远处受双边弯曲作用时孔边无量纲环向应力分布

    Figure  7.  Distributions of dimensionless circumferential stresses around the hole in a plate under bilateral bending at infinity

    图  8  弹性常数和无量纲环向应力沿板厚方向变化曲线

    Figure  8.  Variation of elastic constants and dimensionless hoop stress along the thickness

    表  1  横观各向同性HPM板孔边的力矩Mθ/M0对比

    Table  1.   Torque ratios Mθ/M0 at the edge of a hole in a transversely isotropic HPM plate

    θ 0 0.523 1.046 1.569 2.092 2.615 3.141
    the present -0.083 0.462 1.561 2.130 1.561 0.462 -0.083
    ref. [12] -0.092 0.445 1.542 2.105 1.542 0.445 -0.092
    下载: 导出CSV

    表  2  横观各向同性FGM板孔边的力矩Mθ/M对比

    Table  2.   Torque ratios Mθ/M at the edge of a hole in a transversely isotropic FGM plate

    θ 0 0.523 1.046 1.569 2.092 2.615 3.141
    the present 0.224 0.667 1.552 1.996 1.552 0.667 0.224
    ref. [17] 0.224 0.667 1.552 1.996 1.552 0.667 0.224
    下载: 导出CSV

    表  3  材料参数的变化形式对孔边环向应力集中的影响

    Table  3.   The impacts of material parameter variations on circumferential stress concentrations around the hole

    material parameter variation P1 P2 P3 P4
    maxσα FGM plate 3.801 3.618 3.408 3.348
    FGPM plate 3.567 3.565 3.363 3.285
    magnitude of stress concentration relief of the FGPM plate compared to the FGM plate 6.16% 1.46% 1.32% 1.88%
    下载: 导出CSV
  • [1] 宋晨晨, 严新锐, 张子傲, 等. 功能梯度材料制备技术研究进展[J]. 表面技术, 2022, 51(12): 20-38.

    SONG Chenchen, YAN Xinrui, ZHANG Ziao, et al. Research progress in manufacturing technology of functionally graded materials[J]. Surface Technology, 2022, 51(12): 20-38. (in Chinese)
    [2] SANG Y, PENG K, DING Z, et al. Environmental vibration energy collection technology based on piezoelectric and electromagnetic model[J]. Mechanics of Advanced Materials and Structures, 2022, 29(25): 3595-3601.
    [3] RUBIO W M, VATANABE S L, PAULINO G H. Functionally Graded Piezoelectric Material Systems: a Multiphysics Perspective[M]. Wiley-VCH, 2015.
    [4] YUANX, SHI J, KANG Y, et al. Piezoelectricity, pyroelectricity, and ferroelectricity in biomaterials and biomedical applications[J]. Advanced Materials, 2024, 36(3): e2308726.
    [5] LIANG Y C, SUN Y P, WU L N. Hole problems in a circular piezoelectric plate[J]. Transactions of the Canadian Society for Mechanical Engineering, 2016, 40(4): 491-500.
    [6] RAO D K N, BABU M R, ALAMIREW A, et al. A general solution for electromechanical analysis of electroelastic composite plates with arbitrary holes[J]. Heliyon, 2024, 10(15): e35272.
    [7] 蔡斌, 周立明. 基于非均匀光滑有限元法的含圆孔功能梯度压电板应力和电场集中因子分析[J]. 中南大学学报(自然科学版), 2018, 49(5): 1080-1086.

    CAI Bin, ZHOU Liming. Analysis of stress and electric field concentration in a functionally graded piezoelectric plate with a circular hole based on nonhomogeneous smoothed finite element method[J]. Journal of Central South University (Science and Technology), 2018, 49(5): 1080-1086. (in Chinese)
    [8] 孟广伟, 王晖, 周立明, 等. 含孔功能梯度压电材料板的力电耦合无网格伽辽金法[J]. 中南大学学报(自然科学版), 2015, 46(11): 4015-4020.

    MENG Guangwei, WANG Hui, ZHOU Liming, et al. Electromechanical element-free Galerkin method for functionally graded piezoelectric plate with circular hole[J]. Journal of Central South University (Science and Technology), 2015, 46(11): 4015-4020. (in Chinese)
    [9] NGUYEN L B, THAI C H, ZENKOUR A M, et al. An isogeometric Bézier finite element method for vibration analysis of functionally graded piezoelectric material porous plates[J]. International Journal of Mechanical Sciences, 2019, 157: 165-183.
    [10] MIAO X Y, LI G Q. Analysis of piezoelectric plates with a hole using nature boundary integral equation and domain decomposition[J]. Engineering Analysis With Boundary Elements, 2014, 40: 71-77.
    [11] 王鑫特, 刘娟, 胡彪, 等. 多孔功能梯度压电纳米壳中波传播特性[J]. 应用数学和力学, 2024, 45(2): 197-207. doi: 10.21656/1000-0887.440057

    WANG Xinte, LIU Juan, HU Biao, et al. Wave propagation in functionally graded piezoelectric nanoshells[J]. Applied Mathematics and Mechanics, 2024, 45(2): 197-207. (in Chinese) doi: 10.21656/1000-0887.440057
    [12] XU S P, WANG W. Bending of piezoelectric plates with a circular hole[J]. Acta Mechanica, 2009, 203(3): 127-135.
    [13] 刘淑红, 李延强, 沈英明. 含椭圆孔压电材料的电弹场[J]. 工程力学, 2012, 29(12): 45-50.

    LIU Shuhong, LI Yanqiang, SHEN Yingming. The electro-elastic fields of piezoelectric materials with an elliptic hole[J]. Engineering Mechanics, 2012, 29(12): 45-50. (in Chinese)
    [14] SASAKI T, SUZUKI T, HIRASHIMA K. Transversely isotropic piezoelectric materials with an arbitrarily shaped boundary[J]. Acta Mechanica, 2006, 184(1): 217-230.
    [15] KUMARI S, UPHADHYAY A K, SHUKLA K K. Stress analysis for an infinite plate with circular holes[J]. Materials Today: Proceedings, 2017, 4(2): 2323-2332.
    [16] ENGLAND A H, SPENCER A J M. Complex variable solutions for inhomogeneous and laminated elastic plates[J]. Mathematics and Mechanics of Solids, 2005, 10(5): 503-539.
    [17] YANG B, CHEN W Q, DING H J. 3D elasticity solutions for equilibrium problems of transversely isotropic FGM plates with holes[J]. Acta Mechanica, 2015, 226(5): 1571-1590.
    [18] CHEN W Q, LEE K Y. Alternative state space formulations for magnetoelectric thermoelasticity with transverse isotropy and the application to bending analysis of nonhomogeneous plates[J]. International Journal of Solids and Structures, 2003, 40(21): 5689-5705.
    [19] 沈璐璐, 蔡方圆, 杨博. 功能梯度压电板柱面弯曲的弹性力学解[J]. 应用数学和力学, 2023, 44(3): 272-281. doi: 10.21656/1000-0887.430224

    SHEN Lulu, CAI Fangyuan, YANG Bo. Elasticity solutions for cylindrical bending of functionally graded piezoelectric material plates[J]. Applied Mathematics and Mechanics, 2023, 44(3): 272-281. (in Chinese) doi: 10.21656/1000-0887.430224
    [20] SHADOWITZ A, SCOTT W T. The electromagnetic field[J]. American Journal of Physics, 1976, 44(6): 611-616.
    [21] DING H, CHEN W. Three Dimensional Problems of Piezoelasticity[M]. Huntington N Y: Nova Science Publishers, 2001.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  16
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-24
  • 修回日期:  2025-03-24
  • 刊出日期:  2025-11-01

目录

    /

    返回文章
    返回