留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

融合几何与网格信息的仿真模型快速重构方法

李红庆 倪晨君 王博 蔡永明 张音旋 陈亮 田阔

李红庆, 倪晨君, 王博, 蔡永明, 张音旋, 陈亮, 田阔. 融合几何与网格信息的仿真模型快速重构方法[J]. 应用数学和力学, 2025, 46(8): 947-958. doi: 10.21656/1000-0887.460030
引用本文: 李红庆, 倪晨君, 王博, 蔡永明, 张音旋, 陈亮, 田阔. 融合几何与网格信息的仿真模型快速重构方法[J]. 应用数学和力学, 2025, 46(8): 947-958. doi: 10.21656/1000-0887.460030
LI Hongqing, NI Chenjun, WANG Bo, CAI Yongming, ZHANG Yinxuan, CHEN Liang, TIAN Kuo. A Fast Re-Modelling Method for Simulation Models by Fusing Geometric Information and Simulation Information[J]. Applied Mathematics and Mechanics, 2025, 46(8): 947-958. doi: 10.21656/1000-0887.460030
Citation: LI Hongqing, NI Chenjun, WANG Bo, CAI Yongming, ZHANG Yinxuan, CHEN Liang, TIAN Kuo. A Fast Re-Modelling Method for Simulation Models by Fusing Geometric Information and Simulation Information[J]. Applied Mathematics and Mechanics, 2025, 46(8): 947-958. doi: 10.21656/1000-0887.460030

融合几何与网格信息的仿真模型快速重构方法

doi: 10.21656/1000-0887.460030
基金项目: 

国家自然科学基金 U21A20429

陕西省自然科学基础研究计划 2025SYS-SYSZD-102

辽宁省优秀青年基金 2024JH3/10200003

详细信息
    作者简介:

    李红庆(1997—),男,博士生(E-mail: HongQ.Li@mail.dlut.edu.cn)

    通讯作者:

    田阔(1989—),男,教授,博士生导师(通讯作者. E-mail: tiankuo@dlut.edu.cn)

  • 中图分类号: O39

A Fast Re-Modelling Method for Simulation Models by Fusing Geometric Information and Simulation Information

  • 摘要: 复杂结构的设计迭代过程中,往往涉及大量的重建模与重分析,导致计算成本较高且耗时较长. 针对这一挑战,该文提出了一种融合几何与网格信息的仿真模型快速重构方法. 该方法通过精确捕捉复杂几何模型的结构特征并进行数字化表达,进而训练几何模型的特征信息驱动仿真模型进行自动重构. 首先,引入拟共形映射技术对复杂曲面进行平面参数化,通过栅格采样技术获取平面控制点,根据映射前后对应关系生成曲面控制点,作为结构特征的数字化表达;其次,利用径向基函数算法,对修改前后几何模型的控制点进行训练,通过网格映射技术实现对仿真模型的自动化重构. 最后,为了验证所提出方法的有效性,以飞机隔框结构作为典型算例进行研究. 与传统的仿真模型重构方法相比,最大应力误差仅为0.87%. 所需的人机操作步数减少95.40%,模型重构耗时减少96.67%. 结果表明,所提出方法在保证仿真精度的同时,显著降低了仿真模型重构的时间,实现了基于几何与网格模型映射孪生的快速设计.
  • 图  1  传统模型重构方法与所提出方法技术路线

    Figure  1.  Technology roadmaps of the traditional re-modelling method and the proposed method

    图  2  拟共形映射方法示意图

    Figure  2.  Schematic diagram of the quasi-conformal mapping method

    图  3  基于栅格采样的控制点生成方法示意图

    Figure  3.  Schematic diagram of the control point generation method based on the voxel sampling

    图  4  融合几何与网格信息的仿真模型快速重构方法示意图

    Figure  4.  Schematic of the fast re-modelling method for simulation models fusing geometric and mesh information

    图  5  飞机隔框结构示意图

    Figure  5.  Schematic diagram of the aircraft frame structure

    图  6  修改前后飞机隔框结构几何模型示意图

    Figure  6.  Schematic diagram of geometric model for the aircraft frame structure before and after modification

    图  7  几何模型修改前后的隔框结构局部面片组

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  7.  Schematic diagram of the face groups for the aircraft frame structure before and after modification

    图  8  隔框结构修改前后局部面片组对应控制点

    Figure  8.  Schematic diagram of the control points for the aircraft frame structure before and after modification

    图  9  隔框结构修改前后网格模型

    Figure  9.  Schematic diagram of the mesh models for the aircraft frame structure before and after modification

    图  10  修改后隔框结构应力与位移云图

    Figure  10.  Stress and displacement distribution diagrams of the aircraft frame structure after modification

    表  1  不同模型重构方法对比

    Table  1.   Comparison of results for different re-modelling methods

    maximum displacement/mm maximum stress/MPa consumed time/h steps number of human-computer interaction
    traditional method 0.11 249.81 1.50 87
    proposed method 0.11 247.65 0.05 4
    comparison/% 0.00 -0.87 -96.67 -95.40
    下载: 导出CSV
  • [1] 胡嘉欣, 芮姝, 高瑞朝, 等. 飞行器结构布局与尺寸混合优化方法[J]. 航空学报, 2022, 43 (5): 225363.

    HU Jiaxin, RUI Shu, GAO Ruichao, et al. Hybrid optimization method for structural layout and size of flight vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43 (5): 225363. (in Chinese)
    [2] KHAN H A, SHAHID A, KHUSHBASH S, et al. Investigation of failure and development of mitigation techniques of a cracked aircraft wing spar cap[J]. Engineering Failure Analysis, 2023, 147: 107149. doi: 10.1016/j.engfailanal.2023.107149
    [3] 张永杰, 周静飘, 石磊, 等. 基于PRSEUS结构的翼身融合民机中央机体球亏面框优化设计方法[J]. 航空学报, 2024, 45 (12): 229331.

    ZHANG Yongjie, ZHOU Jingpiao, SHI Lei, et al. Optimization design method of central fuselage spherical deficient surface frames in blended-wing-body civil aircraft based on PRSEUS structure[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45 (12): 229331. (in Chinese)
    [4] 张伦武, 周堃, 赵方超, 等. 装备环境适应性研究进展及展望[J]. 装备环境工程, 2024, 21 (5): 1-12.

    ZHANG Lunwu, ZHOU Kun, ZHAO Fangchao, et al. Research progress and prospect of materiel environmental worthiness[J]. Equipment Environmental Engineering, 2024, 21 (5): 1-12. (in Chinese)
    [5] 吴建国, 李海波, 冯国林, 等. 新形势下航天装备环境试验技术的未来发展趋势[J]. 装备环境工程, 2024, 21 (5): 34-40.

    WU Jianguo, LI Haibo, FENG Guolin, et al. Future development trend of environmental testing technology for aerospace equipment under new circumstances[J]. Equipment Environmental Engineering, 2024, 21 (5): 34-40. (in Chinese)
    [6] BAZILEVS Y, CALO V M, COTTRELL J A, et al. Isogeometric analysis using T-splines[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199 (5/6/7/8): 229-263.
    [7] SUN Y, ZHOU Z, LAI P, et al. Isogeometric analysis-based buckling optimization framework for grid-stiffened shells using asymptotic homogenization method and Rayleigh-Ritz method[J]. Structural and Multidisciplinary Optimization, 2022, 65 (11): 330. doi: 10.1007/s00158-022-03441-4
    [8] NINIĆ J, BUI H G, MESCHKE G. BIM-to-IGA: a fully automatic design-through-analysis workflow for segmented tunnel linings[J]. Advanced Engineering Informatics, 2020, 46: 101137. doi: 10.1016/j.aei.2020.101137
    [9] HAO P, WANG Y, JIN L Z, et al. An isogeometric design-analysis-optimization workflow of stiffened thin-walled structures via multilevel NURBS-based free-form deformations (MNFFD)[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 408: 115936. doi: 10.1016/j.cma.2023.115936
    [10] 金灵智, 王禹, 郝鹏, 等. 加筋路径驱动的板壳自适应等几何屈曲分析[J]. 力学学报, 2023, 55 (5): 1151-1164.

    JIN Lingzhi, WANG Yu, HAO Peng, et al. Adaptive isogeometric buckling analysis of stiffened panels driven by stiffener paths[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55 (5): 1151-1164. (in Chinese)
    [11] HAO P, LIU D C, LIU H, et al. Intelligent optimum design of large-scale gradual-stiffness stiffened panels via multi-level dimension reduction[J]. Computer Methods in Applied Mechanics and Engineering, 2024, 421: 116759.
    [12] WOBBES E, BAZILEVS Y, KURAISHI T, et al. Complex-geometry IGA mesh generation: application to structural vibrations[J]. Computational Mechanics, 2024, 74 (2): 247-261.
    [13] RANK E, RUESS M, KOLLMANNSBERGER S, et al. Geometric modeling, isogeometric analysis and the finite cell method[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 249: 104-115.
    [14] PERDUTA A, PUTANOWICZ R. Tools and techniques for building models for isogeometric analysis[J]. Advances in Engineering Software, 2019, 127: 70-81.
    [15] CAMBA J D, CONTERO M, COMPANY P, et al. The cost of change in parametric modeling: a roadmap[J]. Computer-Aided Design and Applications, 2020, 18 (3): 634-643.
    [16] IYER N, JAYANTI S, LOU K, et al. Three-dimensional shape searching: state-of-the-art review and future trends[J]. Computer-Aided Design, 2005, 37 (5): 509-530.
    [17] MOHR J, KLEINSCHRODT C, TREMMEL S, et al. Compatibility improvement of interrelated items in exchange files: a general method for supporting the data integrity of digital twins[J]. Applied Sciences, 2022, 12 (16): 8099.
    [18] VASANTHA G, PURVES D, QUIGLEY J, et al. Common design structures and substitutable feature discovery in CAD databases[J]. Advanced Engineering Informatics, 2021, 48: 101261.
    [19] YUN H, KIM E, KIM D M, et al. Machine learning for object recognition in manufacturing applications[J]. International Journal of Precision Engineering and Manufacturing, 2023, 24 (4): 683-712.
    [20] WU H, LEI R, PENG Y, et al. AAGNet: a graph neural network towards multi-task machining feature recognition[J]. Robotics and Computer-Integrated Manufacturing, 2024, 86: 102661.
    [21] NING F, SHI Y, CAI M, et al. Part machining feature recognition based on a deep learning method[J]. Journal of Intelligent Manufacturing, 2023, 34 (2): 809-821.
    [22] ZUBAIR A F, ABU MANSOR M S. Automatic feature recognition of regular features for symmetrical and non-symmetrical cylinder part using volume decomposition method[J]. Engineering With Computers, 2018, 34: 843-863.
    [23] HOU B, HUANG Z, ZHOU H, et al. A hybrid hint-based and fuzzy comprehensive evaluation method for optimal parting curve generation in injection mold design[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112: 2133-2148.
    [24] YAO X, WANG D, YU T, et al. A machining feature recognition approach based on hierarchical neural network for multi-feature point cloud models[J]. Journal of Intelligent Manufacturing, 2023, 34 (6): 2599-2610.
    [25] XIAO A, HUANG J, GUAN D, et al. Unsupervised point cloud representation learning with deep neural networks: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (9): 11321-11339.
    [26] COLLIGAN A R, ROBINSON T T, NOLAN D C, et al. Point cloud dataset creation for machine learning on CAD models[J]. Computer-Aided Design and Applications, 2021, 18 (4): 760-771.
    [27] WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38 (5): 1-12.
    [28] YEO C, KIM B C, CHEON S, et al. Machining feature recognition based on deep neural networks to support tight integration with 3D CAD systems[J]. Scientific Reports, 2021, 11 (1): 22147.
    [29] TIAN K, LI H Q, HUANG L, et al. Data-driven modelling and optimization of stiffeners on undevelopable curved surfaces[J]. Structural and Multidisciplinary Optimization, 2020, 62: 3249-3269.
    [30] LI H Q, LI Z C, CHENG Z Z, et al. A data-driven modelling and optimization framework for variable-thickness integrally stiffened shells[J]. Aerospace Science and Technology, 2022, 129: 107839.
    [31] LI H Q, LIU X W, GAO Y M, et al. Active learning-driven control point optimization method for efficient modeling of complex stiffened curved shells[J]. Engineering Structures, 2024, 302: 117412.
    [32] VOGIATZIS P, MA M, CHEN S, et al. Computational design and additive manufacturing of periodic conformal metasurfaces by synthesizing topology optimization with conformal mapping[J]. Computer Methods in Applied Mechanics and Engineering, 2018, 328: 477-497.
    [33] NIAN X, CHEN F. Planar domain parameterization for isogeometric analysis based on Teichmüller mapping[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 311: 41-55.
    [34] 付君健, 徐勇, 周祥曼, 等. 基于联合仿真的曲面共形多孔结构拓扑优化方法[J]. 北京航空航天大学学报, 2024, 50 (9): 2781-2790.

    FU Junjian, XU Yong, ZHOU Xiangman, et al. Topological optimization method for conformal cellular structures on surfaces based on co-simulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (9): 2781-2790. (in Chinese)
    [35] MENG T W, CHOI G P T, LUI L M. TEMPO: feature-endowed Teichmüller extremal mappings of point clouds[J]. SIAM Journal on Imaging Sciences, 2016, 9 (4): 1922-1962.
    [36] QUINN J A, LANGBEIN F C, LAI Y K, et al. Generalized anisotropic stratified surface sampling[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19 (7): 1143-1157.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  6
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-21
  • 修回日期:  2025-03-09
  • 刊出日期:  2025-08-01

目录

    /

    返回文章
    返回