留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于随机建模与Bayes推断的结构热传导

李建宇 付介祥 郝鑫野 李广利

李建宇, 付介祥, 郝鑫野, 李广利. 基于随机建模与Bayes推断的结构热传导[J]. 应用数学和力学, 2025, 46(8): 983-998. doi: 10.21656/1000-0887.460055
引用本文: 李建宇, 付介祥, 郝鑫野, 李广利. 基于随机建模与Bayes推断的结构热传导[J]. 应用数学和力学, 2025, 46(8): 983-998. doi: 10.21656/1000-0887.460055
LI Jianyu, FU Jiexiang, HAO Xinye, LI Guangli. A Digital Twin Modeling Approach for Structural Heat Conduction Analysis Based on Stochastic Modeling and Bayesian Inference[J]. Applied Mathematics and Mechanics, 2025, 46(8): 983-998. doi: 10.21656/1000-0887.460055
Citation: LI Jianyu, FU Jiexiang, HAO Xinye, LI Guangli. A Digital Twin Modeling Approach for Structural Heat Conduction Analysis Based on Stochastic Modeling and Bayesian Inference[J]. Applied Mathematics and Mechanics, 2025, 46(8): 983-998. doi: 10.21656/1000-0887.460055

基于随机建模与Bayes推断的结构热传导

doi: 10.21656/1000-0887.460055
基金项目: 

国家自然科学基金 12002347

详细信息
    通讯作者:

    李建宇(1978—),男,教授,博士(通讯作者. E-mail: lijianyu@tust.edu.cn)

  • 中图分类号: TK124;TP391.9

A Digital Twin Modeling Approach for Structural Heat Conduction Analysis Based on Stochastic Modeling and Bayesian Inference

  • 摘要: 极端热环境条件下结构传热温度场的准确预测是评估装备热-力耦合性能的关键基础.数字孪生(digital twin)技术通过对观测数据与仿真模型的深度融合,可实现温度场的高精度动态重构.然而,考虑观测噪声、模型参数不确定性、边界条件扰动等多源不确定性因素的结构传热温度场预测数字孪生模型目前还不多见.该文基于Bayes推断框架,提出了一种结合随机传热分析的数据与模型融合方法,旨在构建考虑不确定性量化的热传导数字孪生模型.首先,在热传导方程中引入随机扰动热源项,以模拟未被原模型量化表征的不确定性因素;其次,采用随机有限元方法求解随机扰动热传导模型,获得包含物理信息的温度场先验分布;最后,基于Bayes法则,将含噪声的观测数据与模型预测先验分布进行融合,并针对Gauss分布情形推导出温度场后验分布的解析表达式.通过一维和二维热传导算例验证,所提方法不仅能够实现对温度场的高精度预测,还可有效量化预测结果的不确定性.
  • 图  1  基于Bayes推理的数据与模型融合的温度场重构过程

    Figure  1.  Bayesian inference-based fusion of data and model information for temperature field reconstruction

    图  2  一维稳态热传导示意图

    Figure  2.  Schematic diagram of the 1D steady-state heat conduction

    图  3  热导率温度相关和无关两种情形下的一维稳态热传导温度分布图

      为了解释图中的颜色,读者可以参考本文的电子网页版本,后同.

    Figure  3.  The 1D steady-state heat transfer temperature distribution with temperature-dependent and temperature-independent thermal conductivities

    图  4  一维瞬态热传导示意图

    Figure  4.  Schematic diagram of the 1D transient heat conduction

    图  5  热导率温度相关和无关两种情形下,t=2 s, 4 s, 6 s时刻的一维瞬态热传导温度分布

    Figure  5.  The 1D transient heat conduction temperature distribution at t=2 s, 4 s, 6 s with temperature-dependent and temperature-independent thermal conductivities

    图  6  观测数据为1个的温度场预测结果

    Figure  6.  Prediction results of the temperature field with 1 observation

    图  7  观测数据为3个的温度场预测结果

    Figure  7.  Prediction results of the temperature field with 3 observations

    图  8  不考虑观测数据不确定性与考虑观测数据不确定性的预测结果比对

    Figure  8.  Comparison of prediction results without observation data uncertainty vs. with observation data uncertainty

    图  9  第一个观测点(节点1)温度预测结果

    Figure  9.  Temperature prediction results of the 1st observation point (node 1)

    图  10  第二个观测点(节点41)温度预测结果

    Figure  10.  Temperature prediction results of the 2nd observation point (node 41)

    图  11  非观测点(节点4)温度预测结果

    Figure  11.  Temperature prediction results of the non-observed point (node 4)

    图  12  二维稳态热传导示意图

    Figure  12.  Schematic diagram of the 2D steady-state heat conduction

    图  13  二维稳态热传导温度场预测结果示意图

    Figure  13.  Predicted results of the 2D steady-state heat conduction temperature field

    图  14  x=1处各个节点的先验均值、后验均值、先验分布95%置信区间、后验分布95%置信区间以及真值示意图

    Figure  14.  The prior mean, posterior mean, prior distribution 95% confidence interval, posterior distribution 95% confidence interval, and true values of each node at x=1

    图  15  二维瞬态热传导示意图

    Figure  15.  Schematic diagram of the 2D transient heat conduction

    图  16  观测点的温度预测曲线图

    Figure  16.  Temperature prediction results at observed points

    图  17  非观测点的温度预测曲线图

    Figure  17.  Temperature prediction results at non-observed points

    表  1  不同数量观测点条件下,x=0.007 5 m处的温度场预测结果

    Table  1.   Prediction results of the temperature field at x=0.007 5 m under different observations

    1 observation 2 observations 3 observations 4 observations
    prior-mean 452.7 452.7 452.7 452.7
    prior-STD 47.1 47.1 47.1 47.1
    posterior-mean 464.4 463.3 464.5 465.0
    posterior-STD 25.0 16.0 11.9 8.9
    observed data 465.4 465.4 465.4 465.4
    下载: 导出CSV

    表  2  四个非观测点的温度值预测结果

    Table  2.   Temperature prediction results at 4 non-observation locations

    node A1 node B1 node C1 node D1
    prior-mean 190.6 112.4 203.2 176.2
    prior-STD 23.9 9.9 12.9 24.4
    posterior-mean 160.6 100.3 163.6 144.5
    posterior-STD 2.3 1.6 1.9 2.5
    observed data 159.9 101.0 164.0 147.2
    下载: 导出CSV

    表  3  观测点和非观测点温度值预测结果

    Table  3.   Prediction results of observed and unobserved temperature values

    time/s observed point(2, 0.6) non-observed point(0, 1)
    prior-mean prior-TSD posterior-mean posterior-TSD observed value prior-mean prior-TSD posterior-mean posterior-TSD observed value
    0.5 50.0 4.1 60.3 1.3 63.2 158.3 4.7 168.3 1.9 164.5
    1 122.0 4.0 137.1 1.3 143.1 323.3 4.3 337.3 1.9 334.7
    1.5 205.4 4.4 225.7 1.2 233.3 459.9 4.9 480.3 1.8 475.7
    2 293.9 3.9 319.6 1.4 323.4 579.1 3.9 599.9 1.8 599.2
    2.5 385.3 4.3 416.2 1.3 416.7 688.3 4.9 709.9 1.8 712.3
    3 478.3 4.7 512.2 1.2 514.4 791.6 5.3 813.5 1.9 819.4
    3.5 572.3 3.9 613.3 1.4 613.9 891.5 4.1 921.5 1.8 922.9
    4 666.8 3.9 710.5 1.4 712.7 989.5 4.2 1023.4 1.7 1 024.5
    下载: 导出CSV
  • [1] 操小龙, 肖志祥. 组合动力空天飞行器极端服役环境下的关键力学问题[J]. 空天技术, 2023(2): 1-9.

    CAO Xiaolong, XIAO Zhixiang. Key mechanical problems of combined power aerospace vehicles in the extreme service environment[J]. Aerospace Technology, 2023(2): 1-9. (in Chinese)
    [2] 马晗, 方芳, 陈强, 等. 空天飞行器热防护与热管理技术分析与展望[J]. 空天技术, 2023(1): 98-106.

    MA Han, FANG Fang, CHEN Qiang, et al. Analysis and prospect on thermal protection and thermal management technologies of aerospace vehicles[J]. Aerospace Technology, 2023(1): 98-106. (in Chinese)
    [3] 全栋梁, 赵雄涛, 张宇鹏. 空天飞行器结构与热防护系统健康监测技术的需求和挑战[J]. 空天技术, 2023(1): 84-97.

    QUAN Dongliang, ZHAO Xiongtao, ZHANG Yupeng. Demands and challenges of health monitoring technology for the structure and thermal protection system of aerospace vehicle[J]. Aerospace Technology, 2023(1): 84-97. (in Chinese)
    [4] 秦强, 成竹. 考虑认知不确定性的热防护结构瞬态温度场分析[J]. 航空科学技术, 2023, 34(5): 61-66.

    QIN Qiang, CHENG Zhu. Transient temperature field analysis of thermal protection structure considering epistemic uncertainty[J]. Aeronautical Science & Technology, 2023, 34(5): 61-66. (in Chinese)
    [5] XIU D, KARNIADAKIS G E. A new stochastic approach to transient heat conduction modeling with uncertainty[J]. International Journal of Heat and Mass Transfer, 2003, 46(24): 4681-4693. doi: 10.1016/S0017-9310(03)00299-0
    [6] SILVA R L S, VERHOOSEL C, QUAEGHEBEUR E. Bayesian estimation and uncertainty quantification of a temperature-dependent thermal conductivity[Z]. arXiv: 2024, 240312696.
    [7] HUANG M, LI Z, LI J, et al. Uncertainty quantification and sensitivity analysis of aerothermal performance for the turbine blade squealer tip[J]. International Journal of Thermal Sciences, 2022, 175: 107460. doi: 10.1016/j.ijthermalsci.2022.107460
    [8] JIANG X C, WANG X, WEN Z M, et al. Practical uncertainty quantification for space-dependent inverse heat conduction problem via ensemble physics-informed neural networks[J]. International Communications in Heat and Mass Transfer, 2023, 147: 106940. doi: 10.1016/j.icheatmasstransfer.2023.106940
    [9] GRIEVES M. Digital twin: manufacturing excellence through virtual factory replication[Z]. Digital twin white paper, 2014.
    [10] 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18.

    TAO Fei, LIU Weiran, LIU Jianhua, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18. (in Chinese)
    [11] TAO F, ZHANG H, ZHANG C Y. Advancements and challenges of digital twins in industry[J]. Nature Computational Science, 2024, 4(3): 169-177. doi: 10.1038/s43588-024-00603-w
    [12] FERRARI A, WILLCOX K. Digital twins in mechanical and aerospace engineering[J]. Nature Computational Science, 2024, 4(3): 178-183. doi: 10.1038/s43588-024-00613-8
    [13] THELEN A, ZHANG X, FINK O, et al. A comprehensive review of digital twin, part 1: modeling and twinning enabling technologies[J]. Structural and Multidisciplinary Optimization, 2022, 65(12): 354. doi: 10.1007/s00158-022-03425-4
    [14] THELEN A, ZHANG X, FINK O, et al. A comprehensive review of digital twin, part 2: roles of uncertainty quantification and optimization, a battery digital twin, and perspectives[J]. Structural and Multidisciplinary Optimization, 2023, 66(1): 1. doi: 10.1007/s00158-022-03410-x
    [15] 董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021, 42(3): 023981.

    DONG Leiting, ZHOU Xuan, ZHAO Fubin, et al. Key technologies for modeling and simulation of airframe digital twin[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 023981. (in Chinese)
    [16] 田阔, 孙志勇, 李增聪. 面向结构静力试验监测的高精度数字孪生方法[J]. 航空学报, 2024, 45(7): 429134.

    TIAN Kuo, SUN Zhiyong, LI Zengcong. High-precision digital twin method for structural static test monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 429134. (in Chinese)
    [17] WANG S, LAI X, HE X, et al. Building a trustworthy product-level shape-performance integrated digital twin with multifidelity surrogate model[J]. Journal of Mechanical Design, 2022, 144(3): 031703.
    [18] NAROUIE V B, WESSELS H, RÖMER U. Inferring displacement fields from sparse measurements using the statistical finite element method[J]. Mechanical Systems and Signal Processing, 2023, 200: 110574.
    [19] 李宏坤, 魏代同, 陈玉刚, 等. 数字孪生驱动的旋转叶盘振动状态全景感知方法[J]. 机械工程学报, 2023, 59(21): 270-282.

    LI Hongkun, WEI Daitong, CHEN Yugang, et al. A full-field sensing method for vibration state of rotating bladed disks driven by digital twin[J]. Journal of Mechanical Engineering, 2023, 59(21): 270-282. (in Chinese)
    [20] 王青山, 严波, 陈岩, 等. 基于降阶模型和数据驱动的动态结构数字孪生方法[J]. 应用数学和力学, 2023, 44(7): 757-768.

    WANG Qingshan, YAN Bo, CHEN Yan, et al. A digital twin method for dynamic structures based on reduced order models and data driving[J]. Applied Mathematics and Mechanics, 2023, 44(7): 757-768. (in Chinese)
    [21] FARAGHER R. Understanding the basis of the Kalman filter via a simple and intuitive derivation[J]. IEEE Signal Processing Magazine, 2012, 29(5): 128-132.
    [22] KAPTEYN M G, PRETORIUS J V R, WILLCOX K E. A probabilistic graphical model foundation for enabling predictive digital twins at scale[J]. Nature Computational Science, 2021, 1(5): 337-347.
    [23] BLOCKLEY R, SHYY W. 航空航天科技出版工程3: 结构技术[M]. 北京: 北京理工大学出版社, 2016.

    BLOCKLEY R, SHYY W. Encyclopedia of Aerospace Engineering 3: Structural Technology[M]. Beijing: Beijing Institute of Technology Press, 2016. (in Chinese)
    [24] 张靖周. 高等传热学[M]. 2版. 北京: 科学出版社, 2015.

    ZHANG Jingzhou. Advanced Heat Transfer[M]. 2nd ed. Beijing: Science Press, 2015. (in Chinese)
    [25] LORD G J, POWELL C E, SHARDLOW T. An Introduction to Computational Stochastic PDEs[M]. Cambridge University Press, 2014.
    [26] RASMUSSEN C E, WILLIAMS C K I. Gaussian Processes for Machine Learning[M]. The MIT Press, 2006.
    [27] BATHE K J. Finite Element Procedures[M]. Klaus-Jurgen Bathe, 2006.
    [28] SULLIVAN T J. Introduction to Uncertainty Quantification[M]. Springer, 2015.
    [29] BROOKS S, GELMAN A, JONES G, et al. Handbook of Markov Chain Monte Carlo[M]. Chapman and Hall/CRC, 2011.
    [30] NOCEDAL J, WRIGHT S J. Numerical Optimization[M]. Springer, 2006.
    [31] KENNEDY M C, O'HAGAN A. Bayesian calibration of computer models[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2001, 63(3): 425-464.
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  6
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-24
  • 修回日期:  2025-05-22
  • 刊出日期:  2025-08-01

目录

    /

    返回文章
    返回