A Digital Twin Modeling Approach for Structural Heat Conduction Analysis Based on Stochastic Modeling and Bayesian Inference
-
摘要: 极端热环境条件下结构传热温度场的准确预测是评估装备热-力耦合性能的关键基础.数字孪生(digital twin)技术通过对观测数据与仿真模型的深度融合,可实现温度场的高精度动态重构.然而,考虑观测噪声、模型参数不确定性、边界条件扰动等多源不确定性因素的结构传热温度场预测数字孪生模型目前还不多见.该文基于Bayes推断框架,提出了一种结合随机传热分析的数据与模型融合方法,旨在构建考虑不确定性量化的热传导数字孪生模型.首先,在热传导方程中引入随机扰动热源项,以模拟未被原模型量化表征的不确定性因素;其次,采用随机有限元方法求解随机扰动热传导模型,获得包含物理信息的温度场先验分布;最后,基于Bayes法则,将含噪声的观测数据与模型预测先验分布进行融合,并针对Gauss分布情形推导出温度场后验分布的解析表达式.通过一维和二维热传导算例验证,所提方法不仅能够实现对温度场的高精度预测,还可有效量化预测结果的不确定性.Abstract: The accurate prediction of structural heat transfer temperature fields under extreme thermal environments is a critical foundation for evaluating the thermo-mechanical performance of equipment. The digital twin technology enables high-precision dynamic reconstruction of temperature fields through the deep integration of observed data and simulation models. However, digital twin models for predicting structural heat transfer temperature fields with multi-source uncertainties, such as observation noise, model parameter uncertainty, and boundary condition disturbances, are still relatively scarce. Aimed to construct a heat conduction digital twin model with uncertainty quantification, a data-model fusion method combined with stochastic heat conduction analysis was proposed based on the Bayesian inference framework. First, a Gaussian random perturbation heat source term was introduced into the heat conduction equation to simulate uncertainty factors not quantified by the original model. Second, the stochastic heat conduction model was solved with the stochastic finite element method to obtain a prior distribution of the temperature field incorporating physical information. Finally, based on Bayes' theorem, the noisy observation data was fused with the model-predicted prior distribution, and an analytical expression for the posterior distribution of the temperature field was derived for the Gaussian case. The results of 1D and 2D heat conduction examples demonstrate that, the proposed method not only achieves high-precision prediction of the temperature field but also effectively quantifies the uncertainty of the prediction results.
-
表 1 不同数量观测点条件下,x=0.007 5 m处的温度场预测结果
Table 1. Prediction results of the temperature field at x=0.007 5 m under different observations
1 observation 2 observations 3 observations 4 observations prior-mean 452.7 452.7 452.7 452.7 prior-STD 47.1 47.1 47.1 47.1 posterior-mean 464.4 463.3 464.5 465.0 posterior-STD 25.0 16.0 11.9 8.9 observed data 465.4 465.4 465.4 465.4 表 2 四个非观测点的温度值预测结果
Table 2. Temperature prediction results at 4 non-observation locations
node A1 node B1 node C1 node D1 prior-mean 190.6 112.4 203.2 176.2 prior-STD 23.9 9.9 12.9 24.4 posterior-mean 160.6 100.3 163.6 144.5 posterior-STD 2.3 1.6 1.9 2.5 observed data 159.9 101.0 164.0 147.2 表 3 观测点和非观测点温度值预测结果
Table 3. Prediction results of observed and unobserved temperature values
time/s observed point(2, 0.6) non-observed point(0, 1) prior-mean prior-TSD posterior-mean posterior-TSD observed value prior-mean prior-TSD posterior-mean posterior-TSD observed value 0.5 50.0 4.1 60.3 1.3 63.2 158.3 4.7 168.3 1.9 164.5 1 122.0 4.0 137.1 1.3 143.1 323.3 4.3 337.3 1.9 334.7 1.5 205.4 4.4 225.7 1.2 233.3 459.9 4.9 480.3 1.8 475.7 2 293.9 3.9 319.6 1.4 323.4 579.1 3.9 599.9 1.8 599.2 2.5 385.3 4.3 416.2 1.3 416.7 688.3 4.9 709.9 1.8 712.3 3 478.3 4.7 512.2 1.2 514.4 791.6 5.3 813.5 1.9 819.4 3.5 572.3 3.9 613.3 1.4 613.9 891.5 4.1 921.5 1.8 922.9 4 666.8 3.9 710.5 1.4 712.7 989.5 4.2 1023.4 1.7 1 024.5 -
[1] 操小龙, 肖志祥. 组合动力空天飞行器极端服役环境下的关键力学问题[J]. 空天技术, 2023(2): 1-9.CAO Xiaolong, XIAO Zhixiang. Key mechanical problems of combined power aerospace vehicles in the extreme service environment[J]. Aerospace Technology, 2023(2): 1-9. (in Chinese) [2] 马晗, 方芳, 陈强, 等. 空天飞行器热防护与热管理技术分析与展望[J]. 空天技术, 2023(1): 98-106.MA Han, FANG Fang, CHEN Qiang, et al. Analysis and prospect on thermal protection and thermal management technologies of aerospace vehicles[J]. Aerospace Technology, 2023(1): 98-106. (in Chinese) [3] 全栋梁, 赵雄涛, 张宇鹏. 空天飞行器结构与热防护系统健康监测技术的需求和挑战[J]. 空天技术, 2023(1): 84-97.QUAN Dongliang, ZHAO Xiongtao, ZHANG Yupeng. Demands and challenges of health monitoring technology for the structure and thermal protection system of aerospace vehicle[J]. Aerospace Technology, 2023(1): 84-97. (in Chinese) [4] 秦强, 成竹. 考虑认知不确定性的热防护结构瞬态温度场分析[J]. 航空科学技术, 2023, 34(5): 61-66.QIN Qiang, CHENG Zhu. Transient temperature field analysis of thermal protection structure considering epistemic uncertainty[J]. Aeronautical Science & Technology, 2023, 34(5): 61-66. (in Chinese) [5] XIU D, KARNIADAKIS G E. A new stochastic approach to transient heat conduction modeling with uncertainty[J]. International Journal of Heat and Mass Transfer, 2003, 46(24): 4681-4693. doi: 10.1016/S0017-9310(03)00299-0 [6] SILVA R L S, VERHOOSEL C, QUAEGHEBEUR E. Bayesian estimation and uncertainty quantification of a temperature-dependent thermal conductivity[Z]. arXiv: 2024, 240312696. [7] HUANG M, LI Z, LI J, et al. Uncertainty quantification and sensitivity analysis of aerothermal performance for the turbine blade squealer tip[J]. International Journal of Thermal Sciences, 2022, 175: 107460. doi: 10.1016/j.ijthermalsci.2022.107460 [8] JIANG X C, WANG X, WEN Z M, et al. Practical uncertainty quantification for space-dependent inverse heat conduction problem via ensemble physics-informed neural networks[J]. International Communications in Heat and Mass Transfer, 2023, 147: 106940. doi: 10.1016/j.icheatmasstransfer.2023.106940 [9] GRIEVES M. Digital twin: manufacturing excellence through virtual factory replication[Z]. Digital twin white paper, 2014. [10] 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18.TAO Fei, LIU Weiran, LIU Jianhua, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18. (in Chinese) [11] TAO F, ZHANG H, ZHANG C Y. Advancements and challenges of digital twins in industry[J]. Nature Computational Science, 2024, 4(3): 169-177. doi: 10.1038/s43588-024-00603-w [12] FERRARI A, WILLCOX K. Digital twins in mechanical and aerospace engineering[J]. Nature Computational Science, 2024, 4(3): 178-183. doi: 10.1038/s43588-024-00613-8 [13] THELEN A, ZHANG X, FINK O, et al. A comprehensive review of digital twin, part 1: modeling and twinning enabling technologies[J]. Structural and Multidisciplinary Optimization, 2022, 65(12): 354. doi: 10.1007/s00158-022-03425-4 [14] THELEN A, ZHANG X, FINK O, et al. A comprehensive review of digital twin, part 2: roles of uncertainty quantification and optimization, a battery digital twin, and perspectives[J]. Structural and Multidisciplinary Optimization, 2023, 66(1): 1. doi: 10.1007/s00158-022-03410-x [15] 董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021, 42(3): 023981.DONG Leiting, ZHOU Xuan, ZHAO Fubin, et al. Key technologies for modeling and simulation of airframe digital twin[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 023981. (in Chinese) [16] 田阔, 孙志勇, 李增聪. 面向结构静力试验监测的高精度数字孪生方法[J]. 航空学报, 2024, 45(7): 429134.TIAN Kuo, SUN Zhiyong, LI Zengcong. High-precision digital twin method for structural static test monitoring[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 429134. (in Chinese) [17] WANG S, LAI X, HE X, et al. Building a trustworthy product-level shape-performance integrated digital twin with multifidelity surrogate model[J]. Journal of Mechanical Design, 2022, 144(3): 031703. [18] NAROUIE V B, WESSELS H, RÖMER U. Inferring displacement fields from sparse measurements using the statistical finite element method[J]. Mechanical Systems and Signal Processing, 2023, 200: 110574. [19] 李宏坤, 魏代同, 陈玉刚, 等. 数字孪生驱动的旋转叶盘振动状态全景感知方法[J]. 机械工程学报, 2023, 59(21): 270-282.LI Hongkun, WEI Daitong, CHEN Yugang, et al. A full-field sensing method for vibration state of rotating bladed disks driven by digital twin[J]. Journal of Mechanical Engineering, 2023, 59(21): 270-282. (in Chinese) [20] 王青山, 严波, 陈岩, 等. 基于降阶模型和数据驱动的动态结构数字孪生方法[J]. 应用数学和力学, 2023, 44(7): 757-768.WANG Qingshan, YAN Bo, CHEN Yan, et al. A digital twin method for dynamic structures based on reduced order models and data driving[J]. Applied Mathematics and Mechanics, 2023, 44(7): 757-768. (in Chinese) [21] FARAGHER R. Understanding the basis of the Kalman filter via a simple and intuitive derivation[J]. IEEE Signal Processing Magazine, 2012, 29(5): 128-132. [22] KAPTEYN M G, PRETORIUS J V R, WILLCOX K E. A probabilistic graphical model foundation for enabling predictive digital twins at scale[J]. Nature Computational Science, 2021, 1(5): 337-347. [23] BLOCKLEY R, SHYY W. 航空航天科技出版工程3: 结构技术[M]. 北京: 北京理工大学出版社, 2016.BLOCKLEY R, SHYY W. Encyclopedia of Aerospace Engineering 3: Structural Technology[M]. Beijing: Beijing Institute of Technology Press, 2016. (in Chinese) [24] 张靖周. 高等传热学[M]. 2版. 北京: 科学出版社, 2015.ZHANG Jingzhou. Advanced Heat Transfer[M]. 2nd ed. Beijing: Science Press, 2015. (in Chinese) [25] LORD G J, POWELL C E, SHARDLOW T. An Introduction to Computational Stochastic PDEs[M]. Cambridge University Press, 2014. [26] RASMUSSEN C E, WILLIAMS C K I. Gaussian Processes for Machine Learning[M]. The MIT Press, 2006. [27] BATHE K J. Finite Element Procedures[M]. Klaus-Jurgen Bathe, 2006. [28] SULLIVAN T J. Introduction to Uncertainty Quantification[M]. Springer, 2015. [29] BROOKS S, GELMAN A, JONES G, et al. Handbook of Markov Chain Monte Carlo[M]. Chapman and Hall/CRC, 2011. [30] NOCEDAL J, WRIGHT S J. Numerical Optimization[M]. Springer, 2006. [31] KENNEDY M C, O'HAGAN A. Bayesian calibration of computer models[J]. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2001, 63(3): 425-464. -